Study on vertical motion reduction of a trimaran based on collaborative controlled appendages

2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097677
Author(s):  
Zhilin Liu ◽  
Linhe Zheng ◽  
Guosheng Li ◽  
Shouzheng Yuan ◽  
Songbai Yang

In recent years, the trimaran as a novel ship has been greatly developed. The subsequent large vertical motion needs to be studied and resolved. In this article, an experimental study for a trimaran vertical stabilization control is carried out. Three modes including the bare trimaran (the trimaran without appendages, the trimaran with fixed appendages, and the trimaran with controlled appendages) are performed through model tests in a towing tank. The model tests are performed in regular waves. The range of wave period is 2.0–4.0 s, and the speed of the carriage is 2.93 and 6.51 m/s. The results of the three modes show the fixed appendages and the actively controlled appendages are all effective for the vertical motion reduction of the trimaran. Moreover, the controlled appendages are more effective for the vertical stability performance of the trimaran.

2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Mohammadreza Fathi Kazerooni ◽  
Mohammad Saeed Seif

One of the phenomena restricting the tanker navigation in shallow waters is reduction of under keel clearance in the terms of sinkage and dynamic trim that is called squatting. According to the complexity of flow around ship hull, one of the best methods to predict the ship squat is experimental approach based on model tests in the towing tank. In this study model tests for tanker ship model had been held in the towing tank and squat of the model are measured and analyzed. Based on experimental results suitable formulae for prediction of these types of ship squat in fairways are obtained.


2020 ◽  
Author(s):  
Rodolfo T. Gonçalves ◽  
Hideyuki Suzuki ◽  
Matheus A. Marques ◽  
Leandro S. P. Silva ◽  
Chenling Tian ◽  
...  

Abstract The Flow-Induced Motions (FIM) is an essential topic on multi-column platforms due to the effect on the mooring line fatigue life. Vortex-Induced Motions (VIM) or galloping behavior can be observed for an array of four columns with square sections. The presence of pontoons showed to be important for changing the flow around the array and promoting different amplitude behaviors of the motions in the transverse direction mainly. This article aims to understand the effect of the presence of four pontoons on the FIM of a semi-submersible platform (SS) with four square section columns. Model tests of a floating system supported elastically utilizing four springs were performed in a towing tank. Five different pontoon ratios were tested, namely P/L = 0, 0.25, 0.50, 0.75, and 1.00; where P is the pontoon height (the dimension in the vertical direction), and L is the length of the square column face. The draft condition was kept constant as H/L = 1.5; where H is the draft of the platform. The spacing ratio of the columns was S/L = 4; where S is the distance between column centers. Two incidence angles of the current were carried out, namely 0 and 45 degrees. The amplitudes in the transverse direction (direction perpendicular to the incidence current) decreased by increasing the pontoon ratio for 0 and 45-deg incidences. The pontoons positioned aligned to the flow significantly reduced the amplitudes in the transverse direction since the pontoon presence in this position modified the incident wake in the downstream columns. The pontoon presence needs to be well investigated to choose the best condition to avoid raising the FIM or mitigating the FIM.


2021 ◽  
Vol 234 ◽  
pp. 109241
Author(s):  
Chunlong Huang ◽  
Qiulong Yang ◽  
Kunde Yang ◽  
Hong Liu ◽  
Yuanliang Ma

Author(s):  
J R Shahraki ◽  
G A Thomas ◽  
M R Davis

The effect of various centre bow lengths on the motions and wave-induced slamming loads on wave-piercing catamarans is investigated. A 2.5 m hydroelastic segmented model was tested with three different centre bow lengths and towed in regular waves in a towing tank. Measurements were made of the model motions, slam loads and vertical bending moments in the model demi-hulls. The model experiments were carried out for a test condition equivalent to a wave height of 2.68 m and a speed of 20 knots at full scale. Bow accelerations and vertical bending moments due to slamming showed significant changes with the change in centre bow, the longest centre bow having the highest wave-induced loads and accelerations. The increased volume of displaced water which is constrained beneath the bow archways is identified as the reason for this increase in the slamming load. In contrast it was found that the length of centre bow has a relatively small effect on the heave and pitch motions in slamming conditions.


2001 ◽  
Vol 45 (03) ◽  
pp. 216-227
Author(s):  
R. Centeno ◽  
K. S. Varyani ◽  
C. Guedes Soares

An experimental program was performed with hard-chine catamaran models in regular waves. The distance between the demi-hulls of the models was changed to assess its effects on the wave-induced motions. The results allowed the study of some aspects related to catamaran motions, like the interference between the hulls and resonance frequencies. The experimental results are compared with calculations performed with a recently developed code based on a two-dimensional potential flow theory in which viscous forces are included through a cross-flow drag approach. The effect of the hull distance in the heave and pitch motion responses and the importance of the viscous forces in such hull configurations are shown.


1985 ◽  
Author(s):  
J. Gerritsma ◽  
J. A. Keuning

Model tests with five different keels in combination with one particular hull form have been carried out in the Delft Towing Tank. The variations include a plain deep keel, a keel-centre board, a plain restricted draft keel,a "Scheel" keel and a "winglet" keel. Based on the experimental results performance predictions are given for a 63 ft yacht for windspeeds up to 25 knots. The measured side force and resistance as a function of heeling angle, leeway angle and forward speed are used to analyse the relative merits of the considered keel-hull combinations.


Sign in / Sign up

Export Citation Format

Share Document