Experimental Study of Sea Ice Forces on a Structure and its Stability

2011 ◽  
Vol 243-249 ◽  
pp. 4750-4753 ◽  
Author(s):  
Ji Wu Dong ◽  
Zhi Jun Li ◽  
Li Min Zhang ◽  
Guang Wei Li ◽  
Hong Wei Han

A structure was designed to reduce the large forces exerted by level ice on offshore structures in shallow icy waters, by breaking the large ice floes into small pieces from flexing-induced failure. A series of model tests was conducted to simulate ice loads on the structure. A concrete model of it was adopted to verify the stability of the structure under the action of ice floes, which had five different thicknesses. The results show that ice forces on the structure are low and that the stability of the structure under different sea bed is good.

Author(s):  
Dianshi Feng ◽  
Sze Dai Pang ◽  
Jin Zhang

The increasing marine activities in the Arctic has resulted in a growing demand for reliable structural designs in this region. Ice loads are a major concern to the designer of a marine structure in the arctic, and are often the principal factor that governs the structural design [Palmer and Croasdale, 2013]. With the rapid advancement in computational power, numerical method is becoming a useful tool for design of offshore structures subjected to ice actions. Cohesive element method (CEM), a method which has been widely utilized to simulate fracture in various materials ranging from metals to ceramics and composites as well as bi-material systems, has been recently applied to predict ice-structure interactions. Although it shows promising future for further applications, there are also some challenging issues like high mesh dependency, large variation in cohesive properties etc., yet to be resolved. In this study, a 3D finite element model with the use of CEM was developed in LS-DYNA for simulating ice-structure interaction. The stability of the model was investigated and a parameter sensitivity analysis was carried out for a better understanding of how each material parameter affects the simulation results.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Mohamed Aly ◽  
Rocky Taylor ◽  
Eleanor Bailey Dudley ◽  
Ian Turnbull

Ice flexural strength is an important parameter in the assessment of ice loads on the hulls of ice-class ships, sloped offshore structures, and sloped bridge piers. While scale effects in compressive ice strength are well known, there has been debate as to the extent of scale effects in ice flexural strength. To investigate scale effects during flexural failure of both freshwater and saline ice, a comprehensive up-to-date database of beam flexural strength measurements has been compiled. The database includes 2073 freshwater ice beam tests with beam volumes between 0.00016 and 2.197 m3, and 2843 sea ice beam tests with volumes between 0.00048 and 59.87 m3. The data show a considerable decrease in flexural strength as the specimen size increases, when examined over a large range of scales. Empirical models of freshwater ice flexural strength as a function of beam volume, and of saline ice as function of beam and brine volumes have been developed using regression analysis. For freshwater ice, the scale-dependent flexural strength is given as: σf=839(V/V1)−0.13 For sea ice, the dependence of flexural strength has been modeled as: σ=1324(V/V1)−0.054e−4.969vb. Probabilistic models based on the empirical data were developed based on an analysis of the residuals, and can be used to enhance probabilistic analysis of ice loads where ice flexural strength is an input.


1988 ◽  
Vol 110 (1) ◽  
pp. 74-80 ◽  
Author(s):  
N. Nakazawa ◽  
H. Saeki ◽  
T. Ono ◽  
T. Takeuchi ◽  
S. Kanie

In cold regions, changes in water level can induce vertical forces on offshore structures (such as caisson and tower types) when sea ice cover to structure adfreeze bonding is present. This paper summarized the theoretical analyses of vertical ice forces as well as the results of experiments which identified the parameters required when estimating sea ice adfreeze bond strength. 1) Vertical Ice Forces. The authors have proposed a method of calculation that estimates the vertical ice forces taking the following into account: bending failure of the ice cover and adfreeze bond failure (shear induced). Calculation of vertical ice forces by this method requires the following information: bending strength of ice. Young’s modulus of ice, Poisson’s ratio of ice, and adfreeze bond strength to various materials. 2) Adfreeze Bond Strength of Sea Ice. The authors have been conducting, for 6 yr, adfreeze bond strength experiments between sea ice and various common construction materials for offshore structures such as concrete and steel. The following conclusions have been drawn from this study: (i) under certain conditions, the adfreeze bond strength of sea ice greatly depends on the surface roughness of construction materials; (ii) adfreeze bond strength increases with decreasing sea ice temperature; (iii) adfreeze bond strength decreases, approaching a constant, with increasing structure diameter; (iv) adfreeze bond strength increases, approaching a constant, with increasing ice thickness; (v) adfreeze bond strength is not greatly affected by push out velocity and stress rate.


Author(s):  
Jan Thijssen ◽  
Mark Fuglem

Offshore structures designed for operation in regions where sea ice is present will include a sea ice load component in their environmental loading assessment. Typically ice loads of interest are for 10−2, 10−3 or 10−4 annual probability of exceedance (APE) levels, with appropriate factoring to the required safety level. The ISO 19906 standard recommends methods to determine global sea ice loads on vertical structures, where crushing is the predominant failure mode. Fitted coefficients are proposed for both Arctic and Sub-Arctic (e.g. Baltic) conditions. With the extreme ice thickness expected at the site of interest, an annual global sea ice load can be derived deterministically. Although the simplicity of the proposed relation provides quick design load estimates, it lacks accuracy because the only dependencies are structure width, ice thickness and provided coefficients; no consideration is given to site-specific sea ice conditions and the corresponding exposure. Additionally, no term is provided for including ice management in the design load basis. This paper presents a probabilistic methodology to modify the deterministic ISO 19906 relations for determining global and local first-year sea ice loads on vertical structures. The presented methodology is based on the same ice pressure data as presented in ISO 19906, but accounts better for the influence of ice exposure, ice management and site-specific sea ice data. This is especially beneficial for ice load analyses of seasonal operations where exposure to sea ice is limited, and only thinner ice is encountered. Sea ice chart data can provide site-specific model inputs such as ice thickness estimates and partial concentrations, from which corresponding global load exceedance curves are generated. Example scenarios show dependencies of design loads on season length, structural geometry and sea ice conditions. Example results are also provided, showing dependency of design loads on the number of operation days after freeze-up, providing useful information for extending the drilling season of MODUs after freeze-up occurs.


2000 ◽  
Vol 16 ◽  
pp. 181-184
Author(s):  
Shunsuke MAKITA ◽  
Fumihiro HARA ◽  
Hirosi SAEKI

2015 ◽  
Vol 725-726 ◽  
pp. 263-269
Author(s):  
Kseniia Gorbunova ◽  
Karl Shkhinek

Results of studies of ice ridges in field conditions are presented. Ice ridges investigated in the Barents Sea the proximity of the South-East of Svalbard archipelago. Five ice ridges are surveyed during research cruises in 2012-2014 years. Main engineering properties ice ridges as thickness of consolidated layer, height of sail and depth of keel were obtained. Results of research are of primary importance for evaluation of ice loads in studied area in Barents Sea.


Author(s):  
Leon Kellner ◽  
Hauke Herrnring ◽  
Michael Ring

Sea ice can interact with offshore structures in regions with at least seasonal ice coverage. Therefore the prediction of ice loads on offshore structures is required by many standards or classification rules and guidelines. In order to do this, empirical formulas are often prescribed. These are based on assumptions in combination with model or full scale tests. Yet there are very few publications where the results of the formulas are actually compared to measurements. A case study is made for ice loads on the Norströmsgrund lighthouse. First of all current empirical formulas given by standards bodies or classification societies are reviewed with focus on applicability. Secondly, the ice loads predicted by the empirical formulas are compared to measurements. It was found that for the given case most methods significantly overestimate the load. The applicability of some methods is disputable.


Author(s):  
Jukka Tuhkuri ◽  
Arttu Polojärvi

Sea ice loads on marine structures are caused by the failure process of ice against the structure. The failure process is affected by both the structure and the ice, thus is called ice–structure interaction. Many ice failure processes, including ice failure against inclined or vertical offshore structures, are composed of large numbers of discrete failure events which lead to the formation of piles of ice blocks. Such failure processes have been successfully studied by using the discrete element method (DEM). In addition, ice appears in nature often as discrete floes; either as single floes, ice floe fields or as parts of ridges. DEM has also been successfully applied to study the formation and deformation of these ice features, and the interactions of ships and structures with them. This paper gives a review of the use of DEM in studying ice–structure interaction, with emphasis on the lessons learned about the behaviour of sea ice as a discontinuous medium. This article is part of the theme issue ‘Modelling of sea-ice phenomena’.


Sign in / Sign up

Export Citation Format

Share Document