Strength and failure characteristics of rock-like material containing single crack under freeze-thaw and uniaxial compression

2019 ◽  
Vol 162 ◽  
pp. 1-10 ◽  
Author(s):  
Shibing Huang ◽  
Yanzhang Liu ◽  
Yunlin Guo ◽  
Zelin Zhang ◽  
Yuantian Cai
2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Lichao Zhou ◽  
Gang Wang ◽  
Leibo Song ◽  
Wenzhao Chen ◽  
Hongxia Lei

2021 ◽  
Author(s):  
Tao Zhou ◽  
Haijun Chen ◽  
Liangxiao Xiong ◽  
Zhongyuan Xu ◽  
Jie Yang ◽  
...  

Abstract To study the influence of the inclination and length of Z-shaped fissures on the mechanical properties and failure characteristics of the rock mass, this study conducts a series of uniaxial compression tests on rock-like materials with prefabricated Z-shaped fractures. In addition, two-dimensional Particle Flow Code software is used to perform uniaxial compression numerical simulations. The results show that when the specified inclination angle γ (γ = 0°, 30° or 45°) of the parallel cracks on both sides remains unchanged, the peak strength and elastic modulus of the sample show an M-shaped change trend with an increase in the inclination angle β of the middle connection crack. When γ = 60° or 90°, however, the peak strength and elastic modulus of the sample show a trend of decreasing, increasing, and then decreasing as β increases. In addition, the peak strength and elastic modulus of the sample decrease with an increase in the crack length. The influence of crack length on the elastic modulus is less than that of compressive strength. Further, the main failure mode of specimens with Z-shaped cracks is determined to be tension–shear mixed failure manifested by crack propagation from the tip of the prefabricated crack to the upper and lower boundaries of the sample. As a result, a through failure surface is formed with the prefabricated crack, which destroys the sample.


AIP Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 075222 ◽  
Author(s):  
Lingfan Zhang ◽  
Duoxing Yang ◽  
Zhonghui Chen

Sign in / Sign up

Export Citation Format

Share Document