crack coalescence
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 20)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dongxu Liang ◽  
Nong Zhang ◽  
Haoyu Rong

In this study, a model that is closer to the state of fracture presentation in natural rocks has been developed, which is different from the previous. The cross-flaws can be characterized by the joint persistency ( k ) and the angle between the primary flaws and axial load ( α ). The two parameters were varied individually and, by combining them, nine specimens with different nodal parameters were formed. Laboratory specimens and numerical simulations were performed on these specimens to investigate the crack extension process and the variation of crack initiation and coalescence stresses. It is found that a new category of crack coalescence is discovered according to the experimental results besides those reported before, and the angle α affects whether tensile-shear cracks appear. Also, α has an impact on the location where crack first occurs. The joint persistency k alters rock failure mode and has a substantial effect on crack initiation stress. However, the effect on the aggregation stress is not significant. The crack initiation stress decreases in the case of cross-flaws in contrast to flat fissures. In addition, the flat-joint model in PFC2D is used for numerical simulation. It is possible to conduct a study that is difficult to achieve experimentally by using simulations, i.e., only changing one macroparameter without changing others and thus studying the changes in the effect on cracking during fracture. The simulation results are in good agreement with the experimental results. At the same time, the connection mode and the width of the crack coalescence zone of the primary defect, which is difficult to observe in the experiment, are found out from the numerical simulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Nai-Zhong Xu ◽  
Chang-Qing Liu ◽  
You-Jian Wang ◽  
Hong-Bin Dang

A biaxial shear test is performed on prefabricated, single-fissure type, cubic rock-like specimens by using the TZW-500 rock direct shear apparatus to study the shear strength characteristics, crack coalescence, and propagation modes of the specimens with different geometric parameters. Results show that the crack coalescence and propagation modes of the rock-like specimens with prefabricated fissures can be divided into four types, namely, single main shear crack coalescence mode, main shear crack coalescence and secondary tensile-shear crack propagation mode, main shear crack coalescence and secondary shear crack propagation mode, and main shear crack coalescence and secondary tensile crack propagation mode. All modes are affected by the dip angle α and length l of the prefabricated fissure. When the dip angle of the prefabricated fissure is α∈[0°, 20°) or (70°, 90°], the cracks center on shear failure, and most shear cracks propagate along one end of the prefabricated fissure. At α∈(30°, 50°), the cracks bear the tensile-shear combined action, and the shear cracks propagate along the two ends of the prefabricated fissure. The peak shear strength of the rock-like specimens with prefabricated fissures is also closely related to the dip angle α and length l of the fissure. With the increase in dip angle α of the prefabricated fissure, the peak shear strength of each rock-like specimen decreases initially then increases, and the peak shear strength curve presents a similar “U” shape. At α∈[30°, 60°], the peak shear strength is within the peak-valley interval. When the length l of the prefabricated fissure is increased, the peak shear strength experiences a gradual reduction. When l > 20 mm, the peak shear strength is greatly influenced by l, but the influence is minimal when l ≥ 20 mm. At the same dip angle α and fissure length of l ≥ 20 mm, the correlation between peak shear strength and fissure width b is low.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yinzhu Liu ◽  
Ping Cao ◽  
Liwen He ◽  
Qibin Lin

Much geotechnical construction needs to be carried out under the condition of stepped excavation. However, there is still a lack of research on crack coalescence and failure modes of jointed rock mass under stepped excavation conditions. In order to simulate the stepped excavation test of the real project, the polylactic acid (PLA) material is selected as the filler for the excavation area. The stepped excavation tests are performed on sandstone specimens containing a preexisting joint under different normal load conditions. The dynamic stepped excavation of simulating excavate rock engineering is realised. The constant normal loads during the excavation process are determined to be 80 kN and 100 kN. The influence of the joint inclination on the failure characteristics of the excavation process is analysed. Four typical failure modes are summarised: (a) Mode I: crack coalescence of tensile failure; (b) Mode II: crack coalescence of mixed failure; (c) Mode III: without crack coalescence of mixed failure; (d) Mode IV: without crack coalescence of shear failure. Furthermore, the failure characteristics of the area above the excavation hole and the preexisting joint are analysed. The results show that there are three failure modes: (a) Type I: spalling failure; (b) Type II: shear slip failure; (c) Type III: shear slip and spalling mixed failure.


2020 ◽  
Vol 14 (52) ◽  
pp. 247-255
Author(s):  
Chiara Caselle ◽  
Sabrina Maria Rita Bonetto ◽  
Daniele Costanzo

Sign in / Sign up

Export Citation Format

Share Document