Similarity of soil freezing characteristic and soil water characteristic: Application in saline frozen soil hydraulic properties prediction

2020 ◽  
Vol 173 ◽  
pp. 102876
Author(s):  
Xiao Tan ◽  
Mousong Wu ◽  
Jiesheng Huang ◽  
Jingwei Wu ◽  
Jingjing Chen
2018 ◽  
Vol 66 (2) ◽  
pp. 170-180 ◽  
Author(s):  
Vilim Filipović ◽  
Thomas Weninger ◽  
Lana Filipović ◽  
Andreas Schwen ◽  
Keith L. Bristow ◽  
...  

AbstractGlobal climate change is projected to continue and result in prolonged and more intense droughts, which can increase soil water repellency (SWR). To be able to estimate the consequences of SWR on vadose zone hydrology, it is important to determine soil hydraulic properties (SHP). Sequential modeling using HYDRUS (2D/3D) was performed on an experimental field site with artificially imposed drought scenarios (moderately M and severely S stressed) and a control plot. First, inverse modeling was performed for SHP estimation based on water and ethanol infiltration experimental data, followed by model validation on one selected irrigation event. Finally, hillslope modeling was performed to assess water balance for 2014. Results suggest that prolonged dry periods can increase soil water repellency. Inverse modeling was successfully performed for infiltrating liquids, water and ethanol, withR2and model efficiency (E) values both > 0.9. SHP derived from the ethanol measurements showed large differences in van Genuchten-Mualem (VGM) parameters for the M and S plots compared to water infiltration experiments. SWR resulted in large saturated hydraulic conductivity (Ks) decrease on the M and S scenarios. After validation of SHP on water content measurements during a selected irrigation event, one year simulations (2014) showed that water repellency increases surface runoff in non-structured soils at hillslopes.


Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
Horst Gerke ◽  
Rolf Kuchenbuch

AbstractPlants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties.In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix.Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations.


Soil Research ◽  
1990 ◽  
Vol 28 (4) ◽  
pp. 487 ◽  
Author(s):  
MA Rab ◽  
KA Olsson ◽  
ST Willatt

Resistances to water flow were analysed for the soil-root system of a potato crop growing on a duplex soil-where soil hydraulic properties varied with depth-under two irrigation regimes: 'wet' (irrigated weekly) and 'dry' (irrigated twice only during the growing season). The relative magnitudes of the soil and plant resistances controlling root water uptake were evaluated over depth and time using field-measured soil hydraulic properties and root length densities in successive soil layers. Resistance to water flow in the root system is likely to be the dominant resistance in the liquid phase, although soil resistance increased more rapidly than plant resistance with decreasing soil-water matric potential and root length density. Soil resistance reached similar values to plant resistance only when the soil-water matric potential was in the range -900 kPa to -1500 kPa (corresponding soil hydraulic conductivities of 10-7 and 10-8 m day-1 respectively), depending on the root length beneath unit ground area in the soil layer, La. Poor utilization of water from depth of this soil was attributed to resistance in the root system (possibly radial) associated with low La. Practical considerations for improved water management of the potato crop on clay soils are discussed.


2020 ◽  
Author(s):  
Oksana Coban ◽  
Gerlinde de Deyn ◽  
Martine van der Ploeg

<p>Soil, the living skin of the Earth, provides ecosystem services critical for life: soil acts as a water filter and a growing medium, offers habitat for billions of organisms, and supplies most of the antibiotics. In places, it may take a hundred years to form one cm of soil, but it can be degraded only in a few years or less by a number of natural and anthropogenic factors, including climate change. Presently, one third of all land is degraded to some extent, and fertile soil is lost every year. Droughts are becoming more common, also in humid climates, and the combination of erratic weather patterns with an increased pressure on land by human activities leads to soil degradation. Soil degradation results in a loss of fertile topsoil, thereby altering the soil hydrology completely. As the consequences, soil water holding capacity decreases, hydrophobicity increases, and more runoff is observed, that leads to further soil degradation. Thus, soil hydrology is the key for a healthy functioning topsoil/soil ecosystem. We are in urgent need for novel solutions for improving soil hydraulic properties that will lead to restoration of degraded soils.</p><p>In this study we investigate a possibility of restoring degraded soil using microorganisms. The hypothesis is that microorganisms can improve soil hydraulic properties such as infiltration and water retention, and reduce hydrophobicity that will facilitate further ecosystem restoration. Such strategy is based on combining the research fields of microbiology and soil physics that to date have hardly been combined. To test this hypothesis, we have inoculated sandy soil with a bacterium Bacillus mycoides and then measured its hydraulic properties using evaporation and pressure plate methods. We have also made efforts of standardizing this methodology by testing incubation time and inoculum concentrations on the hydraulic properties of the soil. Evaluation of an effect of bacteria addition on the soil water holding capacities and unsaturated water conductivity have been conducted as a comparison between inoculated soil and uninoculated (control). Results of this ongoing study will be presented here.</p>


2018 ◽  
Author(s):  
José Luis Gabriel ◽  
Miguel Quemada ◽  
Diana Martín-Lammerding ◽  
Marnik Vanclooster

Abstract. Cover cropping in agriculture is expected to enhance many agricultural and ecosystems functions and services. Yet, few studies are available allowing to evaluate the impact of cover cropping on the long term change of soil hydrologic functions. We assessed the long term change of the soil hydraulic properties due to cover cropping by means of a 10-year field experiment. We monitored continuously soil water content in non cover cropped and cover cropped fields by means of capacitance probes. We subsequently determined the hydraulic properties by inverting the soil hydrological model WAVE, using the time series of the 10 year monitoring data in the object function. We observed two main impacts, each having their own time dynamics. First, we observed an initial compaction as a result of the minimum tillage. This initial negative effect was followed by a more positive cover crop effect. The positive cover crop effect consisted in an increase of the soil micro- and macro-porosity, improving the structure. This resulted in a larger soil water retention capacity. This latter improvement was mainly observed below 20 cm, and mostly in the soil layer between 40 and 80 cm depth. This study shows that the expected cover crop competition for water with the main crop can be compensated by an improvement of the water retention in the intermediate layers of the soil profile. This may enhance the hydrologic functions of agricultural soils in arid and semiarid regions which often are constrained by water stress.


Sign in / Sign up

Export Citation Format

Share Document