From soil degradation to restoration via soil microorganisms

Author(s):  
Oksana Coban ◽  
Gerlinde de Deyn ◽  
Martine van der Ploeg

<p>Soil, the living skin of the Earth, provides ecosystem services critical for life: soil acts as a water filter and a growing medium, offers habitat for billions of organisms, and supplies most of the antibiotics. In places, it may take a hundred years to form one cm of soil, but it can be degraded only in a few years or less by a number of natural and anthropogenic factors, including climate change. Presently, one third of all land is degraded to some extent, and fertile soil is lost every year. Droughts are becoming more common, also in humid climates, and the combination of erratic weather patterns with an increased pressure on land by human activities leads to soil degradation. Soil degradation results in a loss of fertile topsoil, thereby altering the soil hydrology completely. As the consequences, soil water holding capacity decreases, hydrophobicity increases, and more runoff is observed, that leads to further soil degradation. Thus, soil hydrology is the key for a healthy functioning topsoil/soil ecosystem. We are in urgent need for novel solutions for improving soil hydraulic properties that will lead to restoration of degraded soils.</p><p>In this study we investigate a possibility of restoring degraded soil using microorganisms. The hypothesis is that microorganisms can improve soil hydraulic properties such as infiltration and water retention, and reduce hydrophobicity that will facilitate further ecosystem restoration. Such strategy is based on combining the research fields of microbiology and soil physics that to date have hardly been combined. To test this hypothesis, we have inoculated sandy soil with a bacterium Bacillus mycoides and then measured its hydraulic properties using evaporation and pressure plate methods. We have also made efforts of standardizing this methodology by testing incubation time and inoculum concentrations on the hydraulic properties of the soil. Evaluation of an effect of bacteria addition on the soil water holding capacities and unsaturated water conductivity have been conducted as a comparison between inoculated soil and uninoculated (control). Results of this ongoing study will be presented here.</p>

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1169
Author(s):  
Long Thanh Bui ◽  
Yasushi Mori

If soil hydraulic conductivity or water holding capacity could be measured with a small volume of samples, it would benefit international fields where researchers can only carry a limited amount of soils out of particular regions. We performed a pinhole multistep centrifuge outflow method on three types of soil, which included granite decomposed soil (Masa soil), volcanic ash soil (Andisol soil), and alluvial clayey soil (paddy soil). The experiment was conducted using 2 mL and 15 mL centrifuge tubes in which pinholes were created on the top and bottom for air intrusion and outflow, respectively. Water content was measured at 5, 15, and 30 min after applying the centrifuge to examine the equilibrium time. The results showed that pinhole drainage worked well for outflow, and 15 or 30 min was sufficient to obtain data for each step. Compared with equilibrium data, the retention curve was successfully optimized. Although the curve shape was similar, unsaturated hydraulic conductivities deviated largely, which implied that Ks caused convergence issues. When Ks was set as a measured constant, the unsaturated hydraulic properties converged well and gave excellent results. This method can provide soil hydraulic properties of regions where soil sampling is limited and lacks soil data.


2015 ◽  
Vol 64 (2) ◽  
pp. 339-360 ◽  
Author(s):  
Ya. Pachepsky ◽  
K. Rajkai ◽  
B. Tóth

Parameters governing the retention and movement of water and chemicals in soils are notorious for the difficulties and high labor costs involved in measuring them. Often, there is a need to resort to estimating these parameters from other, more readily available data, using pedotransfer relationships. This work is a mini-review that focuses on trends in pedotransfer development across the World, and considers trends regarding data that are in demand, data we have, and methods to build pedotransfer relationships. Recent hot topics are addressed, including estimating the spatial variability of water contents and soil hydraulic properties, which is needed in sensitivity analysis, evaluation of the model performance, multimodel simulations, data assimilation from soil sensor networks and upscaling using Monte Carlo simulations. Ensembles of pedotransfer functions and temporal stability derived from “big data” as a source of soil parameter variability are also described. Estimating parameter correlation is advocated as the pathway to the improvement of synthetic datasets. Upscaling of pedotransfer relationships is demonstrated for saturated hydraulic conductivity. Pedotransfer at coarse scales requires a different type of input variables as compared with fine scales. Accuracy, reliability, and utility have to be estimated independently. Persistent knowledge gaps in pedotransfer development are outlined, which are related to regional soil degradation, seasonal changes in pedotransfer inputs and outputs, spatial correlations in soil hydraulic properties, and overland flow parameter estimation. Pedotransfer research is an integral part of addressing grand challenges of the twenty-first century, including carbon stock assessments and forecasts, climate change and related hydrological weather extreme event predictions, and deciphering and managing ecosystem services. Overall, pedotransfer functions currently serve as an essential instrument in the science-based toolbox for diagnostics, monitoring, predictions, and management of the changing Earth and soil as a life-supporting Earth system.


2018 ◽  
Vol 66 (2) ◽  
pp. 170-180 ◽  
Author(s):  
Vilim Filipović ◽  
Thomas Weninger ◽  
Lana Filipović ◽  
Andreas Schwen ◽  
Keith L. Bristow ◽  
...  

AbstractGlobal climate change is projected to continue and result in prolonged and more intense droughts, which can increase soil water repellency (SWR). To be able to estimate the consequences of SWR on vadose zone hydrology, it is important to determine soil hydraulic properties (SHP). Sequential modeling using HYDRUS (2D/3D) was performed on an experimental field site with artificially imposed drought scenarios (moderately M and severely S stressed) and a control plot. First, inverse modeling was performed for SHP estimation based on water and ethanol infiltration experimental data, followed by model validation on one selected irrigation event. Finally, hillslope modeling was performed to assess water balance for 2014. Results suggest that prolonged dry periods can increase soil water repellency. Inverse modeling was successfully performed for infiltrating liquids, water and ethanol, withR2and model efficiency (E) values both > 0.9. SHP derived from the ethanol measurements showed large differences in van Genuchten-Mualem (VGM) parameters for the M and S plots compared to water infiltration experiments. SWR resulted in large saturated hydraulic conductivity (Ks) decrease on the M and S scenarios. After validation of SHP on water content measurements during a selected irrigation event, one year simulations (2014) showed that water repellency increases surface runoff in non-structured soils at hillslopes.


Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
Horst Gerke ◽  
Rolf Kuchenbuch

AbstractPlants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties.In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix.Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations.


Soil Research ◽  
1990 ◽  
Vol 28 (4) ◽  
pp. 487 ◽  
Author(s):  
MA Rab ◽  
KA Olsson ◽  
ST Willatt

Resistances to water flow were analysed for the soil-root system of a potato crop growing on a duplex soil-where soil hydraulic properties varied with depth-under two irrigation regimes: 'wet' (irrigated weekly) and 'dry' (irrigated twice only during the growing season). The relative magnitudes of the soil and plant resistances controlling root water uptake were evaluated over depth and time using field-measured soil hydraulic properties and root length densities in successive soil layers. Resistance to water flow in the root system is likely to be the dominant resistance in the liquid phase, although soil resistance increased more rapidly than plant resistance with decreasing soil-water matric potential and root length density. Soil resistance reached similar values to plant resistance only when the soil-water matric potential was in the range -900 kPa to -1500 kPa (corresponding soil hydraulic conductivities of 10-7 and 10-8 m day-1 respectively), depending on the root length beneath unit ground area in the soil layer, La. Poor utilization of water from depth of this soil was attributed to resistance in the root system (possibly radial) associated with low La. Practical considerations for improved water management of the potato crop on clay soils are discussed.


Sign in / Sign up

Export Citation Format

Share Document