Effects of interactions between solids and surfactants on the tribological properties of water-based drilling fluids

Author(s):  
J.M. González ◽  
F. Quintero ◽  
J.E. Arellano ◽  
R.L. Márquez ◽  
C. Sánchez ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


Friction ◽  
2021 ◽  
Author(s):  
Weiwei Tang ◽  
Xuejun Zhu ◽  
Yufeng Li

AbstractAdvances in nano-lubricant additives are vital to the pursuit of energy efficiency and sustainable development. Carbon dots (CDs) have been widely investigated in the domain of lubricant additives owing to their extraordinary tribological properties, in particular, their friction-reducing and anti-wear properties. Metal-doped CDs are a new type of CDs, and their friction-reducing and anti-wear properties are attracting increasing attention. Therefore, a series of CDs doped with various divalent metal ions have been successfully synthesized via one-pot pyrolysis. The tribological properties of the synthesized CDs as water-based lubricant additives are in the following order: Zn-CDs > Cu-CDs ≫ Mg-CDs > Fe-CDs > U-CDs. Specifically, adding 1.0 wt% of Zn-CDs into water-based lubricant results in 62.5% friction and 81.8% wear reduction. Meanwhile, the load-carrying capacity of the water-based lubricant increases from 120 N to at least 500 N. Zn-CDs as an additive have long service life. Additionally, anion-tuned Zn-CDs fabricated via anion exchange exhibit promise as lubricant additives for poly(ethylene glycol). Based on the results of wear scar surface analyses, it is discovered that tribochemical films, primarily composed of iron oxides, nitrides, metal carbonates, zinc oxides, zinc carbonates, organic compounds, and embedded carbon cores, formed on the rubbing surfaces with a thickness of approximately 270 nm when Zn-CDs are used as additives. This film combined with the “ball-bearing” and third-particle effects of Zn-CDs contributed to excellent lubrication performance.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1644
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.


Sign in / Sign up

Export Citation Format

Share Document