Entropy generation optimization and unsteady squeezing flow of viscous fluid with five different shapes of nanoparticles

Author(s):  
Salman Ahmad ◽  
Muhammad Ijaz Khan ◽  
Tasawar Hayat ◽  
Muhammad Imran Khan ◽  
Ahmed Alsaedi
Author(s):  
Noreen Sher Akbar ◽  
Salman Akhtar ◽  
Ehnber N. Maraj ◽  
Ali E. Anqi ◽  
Raad Z. Homod

2019 ◽  
Vol 29 (9) ◽  
pp. 3394-3416 ◽  
Author(s):  
Muhammad Ijaz Khan ◽  
Ahmed Alsaedi ◽  
Salman Ahmad ◽  
Tasawar Hayat

Purpose This paper aims to examine squeezing flow of hybrid nanofluid inside the two parallel rotating sheets. The upper sheet squeezes downward, whereas the lower sheet stretches. Darcy’s relation describes porous space. Hybrid nanofluid consists of copper (Cu) and titanium oxide (TiO2) nanoparticles and water (H2O). Viscous dissipation and thermal radiation in modeling are entertained. Entropy generation analysis is examined. Design/methodology/approach Transformation procedure is implemented for conversion of partial differential systems into an ordinary one. The shooting scheme computes numerical solution. Findings Velocity, temperature, Bejan number, entropy generation rate, skin friction and Nusselt number are discussed. Key results are mentioned. Velocity field increases vs higher estimations of squeezing parameter, while it declines via larger porosity variable. Temperature of liquid particles enhances vs larger Eckert number. It is also examined that temperature field dominates for TiO2-H2O, Cu-H2O and Cu-TiO2-H2O. Magnitude of heat transfer rate and skin friction coefficient increase against higher squeezing parameter, radiative parameter, porosity variable and suction parameter. Originality/value The originality of this paper is investigation of three-dimensional time-dependent squeezing flow of hybrid nanomaterial between two parallel sheets. To the best of the authors’ knowledge, no such consideration has been carried out in the literature.


Author(s):  
A A Alfaryjat ◽  
D Stanciu ◽  
A Dobrovicescu ◽  
V Badescu ◽  
M Aldhaidhawi

Sign in / Sign up

Export Citation Format

Share Document