La(OH)3 loaded magnetic nanocomposites derived from sugarcane bagasse cellulose for phosphate adsorption: Characterization, performance and mechanism

Author(s):  
Yajun Wang ◽  
Jinshou Li ◽  
Yan Yuan ◽  
Yunmei Si ◽  
Jiaxiang Xu ◽  
...  
2011 ◽  
Vol 35 (9) ◽  
pp. 3913-3919 ◽  
Author(s):  
Wender Santana Carvalho ◽  
Douglas Ferreira Martins ◽  
Fernando Rosa Gomes ◽  
Inácio Ramos Leite ◽  
Leandro Gustavo da Silva ◽  
...  

2018 ◽  
Vol 38 ◽  
pp. 29-38
Author(s):  
Puspa Lal Homagai ◽  
Namita Bhandari ◽  
Sahira Joshi

Available with full text.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vihang S. Thite ◽  
Anuradha S. Nerurkar

Abstract After chemical pretreatment, improved amenability of agrowaste biomass for enzymatic saccharification needs an understanding of the effect exerted by pretreatments on biomass for enzymatic deconstruction. In present studies, NaOH, NH4OH and H2SO4 pretreatments effectively changed visible morphology imparting distinct fibrous appearance to sugarcane bagasse (SCB). Filtrate analysis after NaOH, NH4OH and H2SO4 pretreatments yielded release of soluble reducing sugars (SRS) in range of ~0.17–0.44%, ~0.38–0.75% and ~2.9–8.4% respectively. Gravimetric analysis of pretreated SCB (PSCB) biomass also revealed dry weight loss in range of ~25.8–44.8%, ~11.1–16.0% and ~28.3–38.0% by the three pretreatments in the same order. Release of soluble components other than SRS, majorly reported to be soluble lignins, were observed highest for NaOH followed by H2SO4 and NH4OH pretreatments. Decrease or absence of peaks attributed to lignin and loosened fibrous appearance of biomass during FTIR and SEM studies respectively further corroborated with our observations of lignin removal. Application of commercial cellulase increased raw SCB saccharification from 1.93% to 38.84%, 25.56% and 9.61% after NaOH, H2SO4 and NH4OH pretreatments. Structural changes brought by cell wall degrading enzymes were first time shown visually confirming the cell wall disintegration under brightfield, darkfield and fluorescence microscopy. The microscopic evidence and saccharification results proved that the chemical treatment valorized the SCB by making it amenable for enzymatic saccharification.


Sign in / Sign up

Export Citation Format

Share Document