Detoxification of cadmium bearing effluents using low cost biosorbent sugarcane bagasse

Keyword(s):  
2015 ◽  
Vol 9 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Myrian Schettino ◽  
José Holanda

Large amounts of waste materials are discarded in the sugarcane industry. This work investigates the reuse of sugarcane bagasse ash waste as an alternative raw material for porcelain stoneware tile bodies, replacing natural quartz by up to 5 wt.%. The tile pieces were fired at 1230 ?C using a fast-firing cycle (< 60min). The technological properties of the fired tile pieces (e.g., linear shrinkage, water absorption, apparent density, and flexural strength) were determined. The sintering process was followed by SEM and XRD analyses. The results show that up to 2.5 wt.% sugarcane bagasse ash waste can be used as a partial replacement for quartz in porcelain stoneware tile (group BIa, ISO 13006 standard), providing excellent technical properties. Hence, its application in high-quality ceramic tile for use in civil construction as a low-cost, alternative raw material could be an ideal means of managing sugarcane bagasse ash waste.


2019 ◽  
Vol 48 (5) ◽  
pp. 464-471
Author(s):  
Fatma Abdelghaffar ◽  
Rehab A. Abdelghaffar ◽  
Safia A. Mahmoud ◽  
Badria M. Youssef

Purpose This paper aims to improve the adsorption capacity of sugarcane bagasse (SCB) as a low-cost, attractive and effective adsorbent for dye removal from wastewater. Design/methodology/approach SCB is a cellulosic material; it was chemically modified with compounds containing cationic groups. The adsorption efficiency of unmodified and modified SCB was investigated with anionic dyes by studying various factors that affect modified SCB and adsorption. Findings X-ray diffraction, FT-IR spectra and nitrogen content were used to confirm the effect of existence of quaternary ammonium groups on modified SCB. The morphological structure of the modified and unmodified SCB has been demonstrated using electronic scanning microscopy. Research limitations/implications The modified SCB was chemically treated by Quat 188, which is commercially available in the solution of 3-chloro-2-hydroxypropyltrimethyl ammonium chloride. Practical implications Grafting cationic function groups on the surface of sugarcane by cationization treatment enhances its adsorption efficiency for anionic dyes. Originality/value The main value of this research was indicating a clear difference in the appearance of unmodified and modified SCB surfaces. Furthermore, it can be determined that the modified SCB absorbs more of the dyes.


2017 ◽  
Vol 19 (10) ◽  
pp. 2343-2362 ◽  
Author(s):  
Tushar C. Sarker ◽  
Shah Md Golam Gousul Azam ◽  
Ahmed M. Abd El-Gawad ◽  
Salvatore A. Gaglione ◽  
Giuliano Bonanomi

2016 ◽  
Vol 835 ◽  
pp. 378-385 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Mohamed Kutty ◽  
Mohamed Hasnain Isa ◽  
Usman Aminu Umar ◽  
Emmanuel Olisa

Industrial wastewater containing toxic pollutants such as heavy metals tends to contaminate the environment once it is release without proper treatment. Heavy metals are toxic to both human and other living organisms. It is necessary to treat industrial wastewater polluted with heavy metals prior to its discharge into the receiving environment. In this study, low cost adsorbent was generated from sugarcane bagasse through incineration. The prepared adsorbent “microwave incinerated sugarcane bagasse ash” (MISCBA) was used in removing copper and zinc from aqueous solution. Parameters of importance such as pH, contact time and adsorbent dosages are studied to investigate their effects on the adsorption of copper and zinc. Maximum adsorption was observed at pH 6.0, contact time of 180 minutes and adsorbent dosage of 10 g/L. Zinc removal follows Langmuir isotherm model with correlation coefficient of 0.9291. Copper adsorption follows both Langmuir and Freundlich isotherm model with correlation coefficient of 0.9181 and 0.9742, respectively. Removal capacities of 38.4 mg/g and 20.4 mg/g were obtained for copper and zinc, respectively. Application of MISCBA as low - cost adsorbent have shown significant outcome in removal of copper and zinc from aqueous solution.


2015 ◽  
Vol 766-767 ◽  
pp. 104-109
Author(s):  
P. Parandaman ◽  
M. Jayaraman

The present work investigates the effect of hybridization of sugarcane bagasse and banana fibers as reinforcements in the polymer matrix. Composites made from natural fibers possess favourable properties like low cost, light weight, high strength and eco-friendly nature compared to synthetic fibers. Structural applications such as aerospace and automobile industries moving towards the use of these natural composites. In this research work two lightweight composite materials were developed, one with a linear pattern and other with chopped pattern of sugarcane bagasse and banana fiber reinforcements. The developed composites were subjected to different tests to investigate their mechanical behaviour. Both the developed specimens were investigated for their tensile strength, hardness, and water absorption capacity and compared their behaviour. It is observed from the test results, the composite with the chopped fiber reinforcement possess better mechanical properties compared to the linear reinforcement.


2020 ◽  
Vol 4 (2) ◽  
pp. 109-117
Author(s):  
Warsito Warsito ◽  
Anita Rahmawati

ABSTRAKBeton merupakan suatu material yang secara umum menjadi kebutuhan masyarakat terhadap fasilitas infrastruktur konstruksi yang semakin meningkat seiring dengan perkembangan zaman, oleh sebab itu pemilihan beton sebagai bahan baku utama konstruksi bangunan sangatlah penting. Beberapa hal yang perlu ditinjau dalam pembuatan beton adalah harganya relatif murah, mudah diperoleh, memiliki kuat tekan tinggi serta mempunyai sifat tahan terhadap faktor kondisi lingkungan. Abu Ampas Tebu (AAT) adalah sisa hasil pembakaran dari ampas tebu. Ampas tebu sendiri merupakan hasil limbah buangan yang berlimpah dari proses pembuatan gula. Tujuan penelitian ini dimaksudkan untuk mengetahui kuat tekan beton yang menggunakan serat bambu dan abu ampas tebu sebagai pengganti agregat halus dengan variasi tertentu yang mencapai 40%. Penelitian ini menggunakan metode kuantitatif eksperimen dan teknik analisa data menggunakan regresi. Variabel yang digunakan dalam penelitian ini adalah variabel bebas yang berupa variasi penggantian sebagian agregat halus menggunakan abu ampas tebu dan serat bambu. Hasil penelitian ini adalah beton dengan perbandingan komposisi campuran yang didapat sebelumnya dan hasil mix design beton normal maut sedang yaitu dengan besar kuat tekan fc’ 14,5 Mpa (K175) sampai dengan fc’17,15 Mpa (K210,6) yang kemudian ditambah dengan bahan AAT sebagai bahan penambah semen dan serat Bambu.Kata Kunci: Abu Ampas Tebu, Beton, Serat Bambu, Agregat ABSTRACTConcrete is a material that generally supports the community's need for construction of infrastructure facilities which is increasing along with the times. Selection of concrete as the main raw material for building construction is very important. There are benefits in making concrete such as low cost, ease to obtain, high compressive strength and resistancy to environmental conditions. Bagasse Ash (AAT) is the residue from the burning of sugarcane bagasse. Sugarcane bagasse itself is an abundant waste product from the sugar making processes. The purpose of this study was to determine the compressive strength of concrete using bamboo fibers and the AAT as a substitute for fine aggregate with certain variations reaching up to 40% with a concrete enhancer chemical aggregate. This research used the American Concrete Institute design method with a value of 0.40 and 0.45 on the concrete age of 28 days. Results found that the samples made were hard concrete with a comparison of the composition of the mixture obtained previously. Results of a normal deadly concrete mix design comprised with a large compressive strength fc '14.5 Mpa (K175) to fc '17, 15 Mpa (K210,6) which was then added to the AAT as aggregates in the cement and Bamboo fiber.Keywords: Bagasse Ash, Concrete, Bamboo, Aggregate


2020 ◽  
Vol 4 (2) ◽  
pp. 109-117
Author(s):  
Warsito Warsito ◽  
Anita Rahmawati

ABSTRAKBeton merupakan suatu material yang secara umum menjadi kebutuhan masyarakat terhadap fasilitas infrastruktur konstruksi yang semakin meningkat seiring dengan perkembangan zaman, oleh sebab itu pemilihan beton sebagai bahan baku utama konstruksi bangunan sangatlah penting. Beberapa hal yang perlu ditinjau dalam pembuatan beton adalah harganya relatif murah, mudah diperoleh, memiliki kuat tekan tinggi serta mempunyai sifat tahan terhadap faktor kondisi lingkungan. Abu Ampas Tebu (AAT) adalah sisa hasil pembakaran dari ampas tebu. Ampas tebu sendiri merupakan hasil limbah buangan yang berlimpah dari proses pembuatan gula. Tujuan penelitian ini dimaksudkan untuk mengetahui kuat tekan beton yang menggunakan serat bambu dan abu ampas tebu sebagai pengganti agregat halus dengan variasi tertentu yang mencapai 40%. Penelitian ini menggunakan metode kuantitatif eksperimen dan teknik analisa data menggunakan regresi. Variabel yang digunakan dalam penelitian ini adalah variabel bebas yang berupa variasi penggantian sebagian agregat halus menggunakan abu ampas tebu dan serat bambu. Hasil penelitian ini adalah beton dengan perbandingan komposisi campuran yang didapat sebelumnya dan hasil mix design beton normal maut sedang yaitu dengan besar kuat tekan fc’ 14,5 Mpa (K175) sampai dengan fc’17,15 Mpa (K210,6) yang kemudian ditambah dengan bahan AAT sebagai bahan penambah semen dan serat Bambu.Kata Kunci: Abu Ampas Tebu, Beton, Serat Bambu, Agregat ABSTRACTConcrete is a material that generally supports the community's need for construction of infrastructure facilities which is increasing along with the times. Selection of concrete as the main raw material for building construction is very important. There are benefits in making concrete such as low cost, ease to obtain, high compressive strength and resistancy to environmental conditions. Bagasse Ash (AAT) is the residue from the burning of sugarcane bagasse. Sugarcane bagasse itself is an abundant waste product from the sugar making processes. The purpose of this study was to determine the compressive strength of concrete using bamboo fibers and the AAT as a substitute for fine aggregate with certain variations reaching up to 40% with a concrete enhancer chemical aggregate. This research used the American Concrete Institute design method with a value of 0.40 and 0.45 on the concrete age of 28 days. Results found that the samples made were hard concrete with a comparison of the composition of the mixture obtained previously. Results of a normal deadly concrete mix design comprised with a large compressive strength fc '14.5 Mpa (K175) to fc '17, 15 Mpa (K210,6) which was then added to the AAT as aggregates in the cement and Bamboo fiber.Keywords: Bagasse Ash, Concrete, Bamboo, Aggregate


Author(s):  
Thaisa Caroline Andrade Siqueira ◽  
Isabella Zanette da Silva ◽  
Andressa Jenifer Rubio ◽  
Rosângela Bergamasco ◽  
Francielli Gasparotto ◽  
...  

Adsorption in biomass has proven to be a cost-effective option for treatment of wastewater containing dyes and other pollutants, as it is a simple and low cost technique and does not require high initial investments. The present work aimed to study the adsorption of methylene blue dye (MB) using sugarcane bagasse (SCB). The biomass was characterized by scanning electron microscopy (SEM). Adsorption studies were conducted batchwise. Kinetics, adsorption isotherms, and thermodynamics were studied. The results showed that SCB presented a maximum adsorption capacity of 9.41 mg g−1 at 45 °C after 24 h of contact time. Adsorption kinetics data better fitted the pseudo-second order model, indicating a chemical process was involved. The Sips’s three-parameter isotherm model was better for adjusting the data obtained for the adsorption isotherms, indicating a heterogeneous adsorption process. The process showed to be endothermic, spontaneous, and feasible. Therefore, it was concluded that SCB presented as a potential biosorbent material for the treatment of MB-contaminated waters.


2014 ◽  
Vol 893 ◽  
pp. 504-507 ◽  
Author(s):  
Pringgo Widyo Laksono ◽  
Taufiq Rochman ◽  
Hari Setyanto ◽  
Eko Pujiyanto ◽  
Kuncoro Diharjo

The use of sugarcane bagasse for providing avaibility of raw material have been attracting attention. The benefits using natural fiber such as sugarcane bagasse are eco-friendly, low cost considerations because widespread avaibility, high stiffness, better thermal stability, and biodegradability. Sugarcane bagasse and (Polyvinyl acetate, PVAc) have been shown to possess the ability of being applied as raw material for manufacturing of bio composite panel at 10mm thickness (fixed variable) by three mesh sizes (20,30 dan 40) with ratio of the composition 95:5, 90:10 and 85:15%. The specimen have been emphasized at 3:2 and 2:1. This research was conducted to investigate possibility of manufacturing bio composite panel that its characteristic resistance to the thermal conductivity. This bio composite speciments were tested for thermal conductivity test according to ASTM E-1225. The results revealed that optimum design for bio composite panel obtained that emphasis at 3:2, filtered by mesh size 20, ratio composition sugarcane bagasse 85% and PVAc 15%. The test result shown that panel has thermal conductivity resistance value (R) 17,089 °C/W. Thus, it can be concluded that bio composite panel can be manufactured successfully from sugarcane bagasse and PVAc as the matrix mixture.


Sign in / Sign up

Export Citation Format

Share Document