A tabulated chemistry approach for numerical modeling of diesel spray evaporation in a “stabilized cool flame” environment

2006 ◽  
Vol 145 (1-2) ◽  
pp. 259-271 ◽  
Author(s):  
D.I. Kolaitis ◽  
M.A. Founti
Author(s):  
Camille Strozzi ◽  
Moez Ben Houidi ◽  
Julien Sotton ◽  
Marc Bellenoue

The canonical diesel spray A is characterized in an optical Rapid Compression Machine (RCM) at high temperature and density conditions (900 K and 850 K, ρ = 23 kg/m3) using simultaneous high-speed OH* chemiluminescence and two-pulse 355 nm Planar Laser Induced Fluorescence (PLIF). The focus is on the time evolution and the repeatability of the early stages of both cool flame and hot ignition phenomena, and on the time evolution of the fluorescing formaldehyde region in between. In particular, time resolved data related to the cool flame are provided. They show the development of several separated kernels on the spray sides at the onset of formaldehyde appearance. Shortly after this phase, the cool flame region expands at high velocity around the kernels and further downstream towards the richer region at the spray head, reaching finally most of the vapor phase region. The position of the first high temperature kernels and their growth are then characterized, with emphasis on the statistics of their location. These time-resolved data are new and they provide further insights into the dynamics of the spray A ignition. They bring some elements on the underlying mechanisms, which will be useful for the validation and improvement of numerical models devoted to diesel spray ignition.


2014 ◽  
Vol 161 (2) ◽  
pp. 525-540 ◽  
Author(s):  
J. Tillou ◽  
J.-B. Michel ◽  
C. Angelberger ◽  
D. Veynante

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
George Vourliotakis ◽  
Dionysios I. Kolaitis ◽  
Maria A. Founti

Accurate modelling of preignition chemical phenomena requires a detailed description of the respective low-temperature oxidative reactions. Motivated by the need to simulate a diesel oil spray evaporation device operating in the “stabilized” cool flame regime, a “tabulated chemistry” tool is formulated and evaluated. The tool is constructed by performing a large number of kinetic simulations, using the perfectly stirred reactor assumption. n-Heptane is used as a surrogate fuel for diesel oil and a detailed n-heptane mechanism is utilized. Three independent parameters (temperature, fuel concentration, and residence time) are used, spanning both the low-temperature oxidation and the autoignition regimes. Simulation results for heat release rates, fuel consumption and stable or intermediate species production are used to assess the impact of the independent parameters on the system’s thermochemical behaviour. Results provide the physical and chemical insight needed to evaluate the performance of the tool when incorporated in a CFD code. Multidimensional thermochemical behaviour “maps” are created, demonstrating that cool flame activity is favoured under fuel-rich conditions and that cool flame temperature boundaries are extended with increasing fuel concentration or residence time.


Sign in / Sign up

Export Citation Format

Share Document