Simulation and parameter optimisation of pickup device for full-feed peanut combine harvester

2022 ◽  
Vol 192 ◽  
pp. 106602
Author(s):  
Shenying Wang ◽  
Zhichao Hu ◽  
Lijun Yao ◽  
Baoliang Peng ◽  
Bing Wang ◽  
...  
2010 ◽  
Vol 3 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Roberto Rizzo ◽  
Giovanni Romagnoli ◽  
Giuseppe Vignali

Author(s):  
I.A. Tserna ◽  
◽  
V.V. Bukhov ◽  

The paper presents the results of computer simulation of the process of de-formationforged chain wheels, combine harvester; the influence of the placement of the jumper outline for firmware on the processes of defect formation in forging.


2020 ◽  
Vol 13 (2) ◽  
pp. 1
Author(s):  
E. M. Samogim ◽  
T. C. Oliveira ◽  
Z. N. Figueiredo ◽  
J. M. B. Vanini

The combine harvest for soybean crops market are currently available two types of combine with header or platform, one of conventional with revolving reel with metal or plastic teeth to cause the cut crop to fall into the auger header and the other called "draper" headers that use a fabric or rubber apron instead of a cross auger, there are few test about performance of this combine header for soybean in Mato Grosso State. The aim of this work was to evaluate the soybean harvesting quantitative losses and performance using two types combine header in four travel speed. The experiment was conducted during soybean crops season 2014/15, the farm Tamboril in the municipality of Pontes e Lacerda, State of Mato Grosso. The was used the experimental design of randomized blocks, evaluating four forward harvesting speeds (4 km h-1, 5 km h-1, 6 km h-1 and 7 km h-1), the natural crops losses were analyzed, loss caused by the combine harvester (combine header, internal mechanisms and total losses) and was also estimated the  field performance of each combine. Data were submitted to analysis of variance by F test and compared of the average by Tukey test at 5% probability. The results show the draper header presents a smaller amount of total loss and in most crop yield when compared with the conventional cross auger.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 590
Author(s):  
Zhenqian Zhang ◽  
Ruyue Cao ◽  
Cheng Peng ◽  
Renjie Liu ◽  
Yifan Sun ◽  
...  

A cut-edge detection method based on machine vision was developed for obtaining the navigation path of a combine harvester. First, the Cr component in the YCbCr color model was selected as the grayscale feature factor. Then, by detecting the end of the crop row, judging the target demarcation and getting the feature points, the region of interest (ROI) was automatically gained. Subsequently, the vertical projection was applied to reduce the noise. All the points in the ROI were calculated, and a dividing point was found in each row. The hierarchical clustering method was used to extract the outliers. At last, the polynomial fitting method was used to acquire the straight or curved cut-edge. The results gained from the samples showed that the average error for locating the cut-edge was 2.84 cm. The method was capable of providing support for the automatic navigation of a combine harvester.


2018 ◽  
Vol 22 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Khamtay Vongxayya ◽  
Darunee Jothityangkoon ◽  
Danuphol Ketthaisong ◽  
Jaquie Mitchell ◽  
Phetmanyseng Xangsayyasane ◽  
...  

2021 ◽  
Author(s):  
Zhan Su ◽  
Zhao Ding ◽  
Liquan Tian ◽  
Xue Lin ◽  
Zhiming Wang

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jerzy Bienek ◽  
Piotr Komarnicki ◽  
Jerzy Detyna

AbstractThis article presents the main problems associated with cereal harvesting in sloping areas. The presented innovative aerodynamic system supporting the separating unit of combine harvester can be one of the ways to counteract the negative effects of harvesting machines work on slopes. The Monte Carlo numerical method, presented in this article, was applied in the optimization of an aerodynamic sieve separation process on an inclined terrain. The given variables are the transverse slope of separator α (of the sieve), longitudinal slope β and the output of the main and side fans. The Monte Carlo method makes it possible to determine an optimized set of parameters (α = 10°, β = 2.8°, δ = 9°), the output of the main fan (0.67 m3 s−1) and the output of the side fan (1.86 m3 s−1), allowing to obtain the best indicator values of 2.1% grain loss and 97.5% grain purity.


Author(s):  
Martin Mittermayer ◽  
August Gilg ◽  
Franz-Xaver Maidl ◽  
Ludwig Nätscher ◽  
Kurt-Jürgen Hülsbergen

AbstractIn this study, site-specific N balances were calculated for a 13.1 ha heterogeneous field. Yields and N uptake as input data for N balances were determined with data from a combine harvester, reflectance measurements from satellites and tractor-mounted sensors. The correlations between the measured grain yields and yields determined by digital methods were moderate. The calculated values for the N surpluses had a wide range within the field. Nitrogen surpluses were calculated from − 76.4 to 91.3 kg ha−1, with a mean of 24.0 kg ha−1. The use of different data sources and data collection methods had an impact on the results of N balancing. The results show the need for further optimization and improvement in the accuracy of digital methods. The factors influencing N uptake and N surplus were determined by analysing soil properties of georeferenced soil samples. Soil properties showed considerable spatial variation within the field. Soil organic carbon correlated very strongly with total nitrogen content (r = 0.97), moderately with N uptake (sensor, r = 0.60) and negatively with N surplus (satellite, r = − 0.46; sensor, r = − 0.56; harvester, r = − 0.60). Nitrate content was analysed in soil cores (0 to 9 m) taken in different yield zones, and compared with the calculated N surplus; there was a strong correlation between the measured nitrate content and calculated N surplus (r = 0.82). Site-specific N balancing can contribute to a more precise identification of the risk of nitrate losses and the development of targeted nitrate reduction strategies.


Sign in / Sign up

Export Citation Format

Share Document