scholarly journals A fully coupled computational fluid dynamics – agent-based model of atherosclerotic plaque development: Multiscale modeling framework and parameter sensitivity analysis

2020 ◽  
Vol 118 ◽  
pp. 103623
Author(s):  
Anna Corti ◽  
Claudio Chiastra ◽  
Monika Colombo ◽  
Marc Garbey ◽  
Francesco Migliavacca ◽  
...  
2017 ◽  
Vol 320 ◽  
pp. 261-286 ◽  
Author(s):  
Mohammad Mamunur Rahman ◽  
Yusheng Feng ◽  
Thomas E. Yankeelov ◽  
J. Tinsley Oden

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Michael P. Kinzel ◽  
Jules W. Lindau ◽  
Robert F. Kunz

This effort investigates advancing cavitation modeling relevant to computational fluid dynamics (CFD) through two strategies. The first aims to reformulate the cavitation models and the second explores adding liquid–vapor slippage effects. The first aspect of the paper revisits cavitation model formulations with respect to the Rayleigh–Plesset equation (RPE). The present approach reformulates the cavitation model using analytic solutions to the RPE. The benefit of this reformulation is displayed by maintaining model sensitivities similar to RPE, whereas the standard models fail these tests. In addition, the model approach is extended beyond standard homogeneous models, to a two-fluid modeling framework that explicitly models the slippage between cavitation bubbles and the liquid. The results indicate a significant impact of slip on the predicted cavitation solution, suggesting that the inclusion of such modeling can potentially improve CFD cavitation models. Overall, the results of this effort point to various aspects that may be considered in future CFD-modeling efforts with the goal of improving the model accuracy and reducing computational time.


Sign in / Sign up

Export Citation Format

Share Document