scholarly journals Combining Computational Fluid Dynamics and Agent-Based Modeling: A New Approach to Evacuation Planning

PLoS ONE ◽  
2011 ◽  
Vol 6 (5) ◽  
pp. e20139 ◽  
Author(s):  
Joshua M. Epstein ◽  
Ramesh Pankajakshan ◽  
Ross A. Hammond
Biomimetics ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Mustafa Kemal Ozalp ◽  
Laura A. Miller ◽  
Thomas Dombrowski ◽  
Madeleine Braye ◽  
Thomas Dix ◽  
...  

The movement of plankton is often dictated by local flow patterns, particularly during storms and in environments with strong flows. Reefs, macrophyte beds, and other immersed structures can provide shelter against washout and drastically alter the distributions of plankton as these structures redirect and slow the flows through them. Advection–diffusion and agent-based models are often used to describe the movement of plankton within marine and fresh water environments and across multiple scales. Experimental validation of such models of plankton movement within complex flow environments is challenging because of the difference in both time and spatial scales. Organisms on the scale of 1 mm or less swim by beating their appendages on the order of 1 Hz and are advected meters to kilometers over days, weeks, and months. One approach to study this challenging multiscale problem is to insert actively moving agents within a background flow field. Open source tools to implement this sort of approach are, however, limited. In this paper, we combine experiments and computational fluid dynamics with a newly developed agent-based modeling platform to quantify plankton movement at the scale of tens of centimeters. We use Artemia spp., or brine shrimp, as a model organism given their availability and ease of culturing. The distribution of brine shrimp over time was recorded in a flow tank with simplified physical models of macrophytes. These simplified macrophyte models were 3D-printed arrays of cylinders of varying heights and densities. Artemia nauplii were injected within these arrays, and their distributions over time were recorded with video. The detailed three-dimensional flow fields were quantified using computational fluid dynamics and validated experimentally with particle image velocimetry. To better quantify plankton distributions, we developed an agent-based modeling framework, Planktos, to simulate the movement of plankton immersed within such flow fields. The spatially and temporally varying Artemia distributions were compared across models of varying heights and densities for both the experiments and the agent-based models. The results show that increasing the density of the macrophyte bed drastically increases the average time it takes the plankton to be swept downstream. The height of the macrophyte bed had less of an effect. These effects were easily observed in both experimental studies and in the agent-based simulations.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Francis H. Harlow

This paper describes extensions of computational fluid dynamics (CFD) to fields of analysis lying well beyond their current realms of application. In particular, three examples are presented. The first is to the collective behavior of mobs of people interacting with sources of danger and/or opportunity to which each individual responds by actions that depend strongly on the inducement of fear and/or excitement, depending on the intrinsic susceptibilities of the person. This behavior results in both individual activities (agent-based) and collective behaviors (crowd-based stochastic) with consequences of potentially great significance. Extensions are also described for which various other emotional developments are important to the behavior of a mob. The second example is to the processes of biological evolution, in particular to the driving forces that influence the directions of species alterations through a succession of characteristics that are tested for survivability in classical Darwinian fashion. The key to the analysis lies in the newly emerging field of epigenetics, in which numerous important experimental studies are producing astonishing results leading to major challenges to the creation of computational models of the collective fluid-like dynamics of interacting biological species. The third example explores an alternative to the Big Bang theory for describing the origin of our universe. The idea is that a parent universe exists, being composed of energy, matter, and antimatter in various forms. In some region a perturbation occurs, which locally has an excess of matter over antimatter. An enormous gravitational buildup of matter and energy in the region leads to a black hole, in which there is distortion in the fourth dimension. The result then leads to an offspring entity (universe) that becomes completely detached from the parent. To apply computational fluid dynamics to the analysis of this process requires formulations that include a major component of relevant physical representations. In all three of these examples, instabilities, fluctuations, and turbulence play major roles. These arise naturally in agent-based numerical formulations (the first and second of our examples), but are much more challenging to describe in a stochastic representation (e.g., the Navier–Stokes equations). Some promising spectral analysis extensions for stochastic formulations are included in this paper.


Author(s):  
Michael Laver ◽  
Ernest Sergenti

This chapter begins with a brief discussion of the need for a new approach to modeling party competition. It then makes a case for the use of agent-based modeling to study multiparty competition in an evolving dynamic party system, given the analytical intractability of the decision-making environment, and the resulting need for real politicians to rely on informal decision rules. Agent-based models (ABMs) are “bottom-up” models that typically assume settings with a fairly large number of autonomous decision-making agents. Each agent uses some well-specified decision rule to choose actions, and there may be considerable diversity in the decision rules used by different agents. Given the analytical intractability of the decision-making environment, the decision rules that are specified and investigated in ABMs are typically based on adaptive learning rather than forward-looking strategic analysis, and agents are assumed to have bounded rather than perfect rationality. An overview of the subsequent chapters is also presented.


Sign in / Sign up

Export Citation Format

Share Document