A Non-Line-of-Sight mitigation localization algorithm for sensor networks using clustering analysis

2014 ◽  
Vol 40 (2) ◽  
pp. 433-442 ◽  
Author(s):  
Dayang Sun ◽  
Hongrun Zhang ◽  
Zhihong Qian
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2945 ◽  
Author(s):  
Long Cheng ◽  
Liang Feng ◽  
Yan Wang

Wireless sensor networks (WSNs) have become a popular research subject in recent years. With the data collected by sensors, the information of a monitored area can be easily obtained. As a main contribution of WSN localization is widely applied in many fields. However, when the propagation of signals is obstructed there will be some severe errors which are called Non-Line-of-Sight (NLOS) errors. To overcome this difficulty, we present a residual analysis-based improved particle filter (RAPF) algorithm. Because the particle filter (PF) is a powerful localization algorithm, the proposed algorithm adopts PF as its main body. The idea of residual analysis is also used in the proposed algorithm for its reliability. To test the performance of the proposed algorithm, a simulation is conducted under several conditions. The simulation results show the superiority of the proposed algorithm compared with the Kalman Filter (KF) and PF. In addition, an experiment is designed to verify the effectiveness of the proposed algorithm in an indoors environment. The localization result of the experiment also confirms the fact that the proposed algorithm can achieve a lower localization error compared with KF and PF.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2991 ◽  
Author(s):  
Jingyu Hua ◽  
Yejia Yin ◽  
Weidang Lu ◽  
Yu Zhang ◽  
Feng Li

The problem of target localization in WSN (wireless sensor network) has received much attention in recent years. However, the performance of traditional localization algorithms will drastically degrade in the non-line of sight (NLOS) environment. Moreover, variable methods have been presented to address this issue, such as the optimization-based method and the NLOS modeling method. The former produces a higher complexity and the latter is sensitive to the propagating environment. Therefore, this paper puts forward a simple NLOS identification and localization algorithm based on the residual analysis, where at least two line-of-sight (LOS) propagating anchor nodes (AN) are required. First, all ANs are grouped into several subgroups, and each subgroup can get intermediate position estimates of target node through traditional localization algorithms. Then, the AN with an NLOS propagation, namely NLOS-AN, can be identified by the threshold based hypothesis test, where the test variable, i.e., the localization residual, is computed according to the intermediate position estimations. Finally, the position of target node can be estimated by only using ANs under line of sight (LOS) propagations. Simulation results show that the proposed algorithm can successfully identify the NLOS-AN, by which the following localization produces high accuracy so long as there are no less than two LOS-ANs.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Shixun Wu ◽  
Shengjun Zhang ◽  
Kai Xu ◽  
Darong Huang

In this paper, a localization scenario that the home base station (BS) measures time of arrival (TOA) and angle of arrival (AOA) while the neighboring BSs only measure TOA is investigated. In order to reduce the effect of non-line of sight (NLOS) propagation, the probability weighting localization algorithm based on NLOS identification is proposed. The proposed algorithm divides these range and angle measurements into different combinations. For each combination, a statistic whose distribution is chi-square in LOS propagation is constructed, and the corresponding theoretic threshold is derived to identify each combination whether it is LOS or NLOS propagation. Further, if those combinations are decided as LOS propagation, the corresponding probabilities are derived to weigh the accepted combinations. Simulation results demonstrate that our proposed algorithm can provide better performance than conventional algorithms in different NLOS environments. In addition, computational complexity of our proposed algorithm is analyzed and compared.


Author(s):  
Subharthi Banerjee ◽  
Michael Hempel ◽  
Hamid Sharif

Railroad environments are generally considered to be among the most dynamic workplace environments, even with constant improvement efforts by the railroad industry. While there has been great progress in equipment safety, personnel safety is a significantly harder challenge. These challenges are primarily derived from the presence of heavy moving machinery in close proximity to personnel and the difficulty of designing reliable wearable protection devices. Additionally, variable weather conditions, challenging walking conditions (ballast, trip hazards, etc.), and difficulty to focus on environment, moving objects, and on tasks at hand place the employees in constant peril. Therefore, our survey is focused on exploring solutions for protecting employees through unified system modeling and design that makes the employee integral to the process and results in personal protective devices that work with the environment and the employee, not against them. The optimal system design integrates not only protection of the employees from falls, unsafe practices, or collisions, but also aids in resource planning, safe operation and accounting of “near-miss” situations. In recent years the railroads have made significant investments in process automation and monitoring solutions such as Wireless Sensor Networks. These technologies are becoming increasingly cloud-connected and autonomous. They provide a plethora of information about equipment positions, movement, railcar lading, and many other factors, all of which are highly useful in the design and implementation of a railyard worker protection system. They allow us to predict position and movement, and can thus be used to provide effective proximity detection and alerting in some railyard regions where these systems are installed. Additionally, we discuss several technologies addressing near-collision, fall, and proximity situations through RF and non-RF-based techniques. The railroad industry has been advancing efforts leveraging these technologies to improve the safety of their workers. However, there are also many challenges that remain largely unaddressed. For example, in railroads, a detailed and exhaustive causation analysis for worker incidents has yet to be conducted. Therefore, in an environment like a railyard there is no solution to detect or prevent Employee on Duty (EOD) fall, collision, or health issues such as dehydration, psychological issues and high blood pressure. Protective devices worn by workers is believed to be one of the most important, cost-effective, and scalable potential candidate solutions. Recent advances are making wearable wireless body area networks (WBAN) and wireless sensor networks (WSNs) that are distributed and large-scale a reality. Such distributed networks consist of wearable sensors, fixed-installation sensors and communication links between all of them. The challenges are found in selecting wearable sensors, researching reliable communication among nodes without interfering with proximity detection and suitable for high-multipath, non-line of sight channel conditions, wearable antenna designs, power supply requirements, etc. A dense, distributed, large-scale environment like a railyard requires comprehensive workspace modelling and safety analysis. Interference related to RF sensor deployment, blind spots in vision-based approaches, and wireless propagation in intra and inter-WBAN communication due to dense non-Line-of-Sight workspace environments, metallic heavy machinery and the use of RF sensors, are all individual research challenges in this domain. This paper reviews these challenges, explores potential solutions, and thus provides a comprehensive survey of a holistic system design approach for a wearable railyard worker protection system that is unobtrusive, effective, and reliable.


2020 ◽  
Vol 16 (9) ◽  
pp. 155014772096123
Author(s):  
Nan Hu ◽  
Chuan Lin ◽  
Fangjun Luan ◽  
Chengdong Wu ◽  
Qi Song ◽  
...  

As the key technology for Internet of things, wireless sensor networks have received more attentions in recent years. Mobile localization is one of the significant topics in wireless sensor networks. In wireless sensor network, non-line-of-sight propagation is a common phenomenon leading to the growing non-line-of-sight error. It is a fatal impact for the localization accuracy of the mobile target. In this article, a novel method based on the nearest neighbor variable estimation is proposed to mitigate the non-line-of-sight error. First, the linear regression model of the extended Kalman filter is used to obtain the residual of the distance measurement value. After that, the residual analysis is used to complete the identification of the measurement value state. Then, by analyzing the statistical characteristics of the non-line-of-sight residual, the nearest neighbor variable estimation is proposed to estimate the probability density function of residual. Finally, the improved M-estimation is proposed to locate the mobile robot. Experiment results prove that the accuracy and robustness of the proposed algorithm are better than other methods in the mixed line-of-sight/non-line-of-sight environment. The proposed algorithm effectively inhibits the non-line-of-sight error.


2013 ◽  
Vol 712-715 ◽  
pp. 2003-2006
Author(s):  
Sheng Mei Zhou ◽  
Ting Lei Huang

In the process of that based on the RSSI received signal strength indicator technique, resulting in the positioning accuracy is so low, since the simple RSSI, multipath, diffraction and non line of sight and other factors. In order to achieve higher accuracy node localization in wireless sensor, the paper is proposed based on the probability of recycling triangle centroid location algorithm in the RSSI technique,The probability of the cycle to handle triangle centroid localization algorithm. Through the Matlab simulation, compared with the traditional triangle centroid localization algorithm, the error is significantly reduced and positioning accuracy improved when the anchor point number exceeds a certain number.


Sign in / Sign up

Export Citation Format

Share Document