Navier–Stokes solver for water entry bodies with moving Chimera grid method in 6DOF motions

2016 ◽  
Vol 140 ◽  
pp. 19-38 ◽  
Author(s):  
Van-Tu Nguyen ◽  
Duc-Thanh Vu ◽  
Warn-Gyu Park ◽  
Chul-Min Jung
2007 ◽  
Vol 573 ◽  
pp. 171-190 ◽  
Author(s):  
A. DIPANKAR ◽  
T. K. SENGUPTA ◽  
S. B. TALLA

Vortex shedding behind a cylinder can be controlled by placing another small cylinder behind it, at low Reynolds numbers. This has been demonstrated experimentally by Strykowski & Sreenivasan (J. Fluid Mech. vol. 218, 1990, p. 74). These authors also provided preliminary numerical results, modelling the control cylinder by the innovative application of boundary conditions on some selective nodes. There are no other computational and theoretical studies that have explored the physical mechanism. In the present work, using an over-set grid method, we report and verify numerically the experimental results for flow past a pair of cylinders. Apart from providing an accurate solution of the Navier–Stokes equation, we also employ an energy-based receptivity analysis method to discuss some aspects of the physical mechanism behind vortex shedding and its control. These results are compared with the flow picture developed using a dynamical system approach based on the proper orthogonal decomposition (POD) technique.


Author(s):  
V.V. Vyshinsky ◽  
K.T. Zoan

The paper introduces an engineering method for assessing the aerodynamic effect of disturbed atmosphere on an aircraft. As a source of vortex structures, we can consider vortex wind wakes that arise when the atmospheric wind flows around the landscape, large structures, moving or stationary aircraft-carrying platforms, vortex wakes behind aircraft, etc. In this study, we consider the situation when a light transport aircraft and an aircraft of the MC-21 type get into the vortex wake behind the super-heavy aircraft A-380 when flying along the glide path. A coherent vortex structure behind the A-380 is formed by the grid method within the framework of the boundary value problem for the Reynolds-averaged Navier —Stokes equations. The evolution and stochastics of the far wake are carried out using the author’s computer code written in the MATLAB system, within the framework of discrete vortices with a Rankine core. The assessment of the increment of forces and moments from the effect of the vortex system on the aircraft was carried out using the panel method.


2020 ◽  
Vol 10 (22) ◽  
pp. 7952
Author(s):  
Qiang Wang ◽  
Boran Zhang ◽  
Pengyao Yu ◽  
Guangzhao Li ◽  
Zhijiang Yuan

The bow-flared section may be simplified in the prediction of slamming loads and whipping responses of ships. However, the difference of hydrodynamic characteristics between the water entry of the simplified sections and that of the original section has not been well documented. In this study, the water entry of several different bow-flared sections was numerically investigated using the computational fluid dynamics method based on Reynolds-averaged Navier–Stokes equations. The motion of the grid around the section was realized using the overset mesh method. Reasonable grid size and time step were determined through convergence studies. The application of the numerical method in the water entry of bow-flared sections was validated by comparing the present predictions with previous numerical and experimental results. Through a comparative study on the water entry of one original section and three simplified sections, the influences of simplification of the bow-flared section on hydrodynamic characteristics, free surface evolution, pressure field, and impact force were investigated and are discussed here.


2013 ◽  
Vol 419 ◽  
pp. 97-102
Author(s):  
Wei Cao ◽  
Chun Tao He ◽  
Cong Wang

Computational simulation investigation which is based on the Navier-Stokes equation, finite-volume method, dynamic mesh method, and volume of fluid method, was carried out principally on the constant speed vertical water entry of the cone with 75 degree and a half angle. Based on this, the cavity generation and the process of cavity wall expansion of the cone with 75 degree and a half angle were analyzed. Through analyzing the expansion dynamic for the cavity wall in different depths, the velocity and acceleration with time in the process of cavity wall expansion were obtained, and the disturbances and splash feature laws of the free surface near the entrance of the cavity after cones water-entry were analyzed too.


Author(s):  
Qingyong Yang ◽  
Wei Qiu

This paper presents the numerical solutions of slamming problems for 3D bodies entering calm water with vertical and oblique velocities. The highly nonlinear water entry problems are governed by the Navier-Stokes equations and were solved by a constrained interpolation profile (CIP)-based finite difference method on a fixed Cartesian grid. In the computation, the 3D CIP method was employed for the advection calculations and a pressure-based algorithm was applied for the nonadvection calculations. The solid body and the free surface interfaces were captured by density functions. For the pressure computation, a Poisson-type equation was solved at each time step by using the conjugate gradient iterative method. Validation studies were carried out for a 3D wedge, a cusped body vertically entering calm water, and the oblique entry of a sphere into calm water. The predicted hydrodynamic forces on the wedge, the cusped body, and the sphere were compared with experimental data.


2020 ◽  
Vol 10 (5) ◽  
pp. 1822
Author(s):  
Qing Wang ◽  
Qijun Zhao

The dynamic stall characteristics of rotor airfoil are researched by employing unsteady Reynolds-Averaged Navier-Stokes (RANS) method under oscillating freestream velocity conditions. In order to simulate the oscillating freestream velocity of airfoil under dynamic stall conditions, the moving-embedded grid method is employed to simulate the oscillating velocity. By comparing the simulated dynamic stall characteristics of two-dimensional airfoil and three-dimensional rotor, it is indicated that the dynamic stall characteristics of airfoil under oscillating freestream velocity reflect the actual dynamic stall characteristics of rotor airfoil in forward flight more accurately. By comparing the simulated results of OA209 airfoil under coupled freestream velocity/pitching oscillation conditions, it is indicated that the dynamic stall characteristics of airfoil associate with the critical value of Cp peaks (i.e., the dynamic stall characteristics of OA209 airfoil would be enhanced when the maximum negative pressure is larger than −1.08, and suppressed when this value is smaller than −1.08). By comparing the characteristics of vortices under different oscillating velocities, it indicates that the dissipation rate of leading edge vortex presents as exponent characteristics, and it is not sensitive to different oscillating velocities.


Sign in / Sign up

Export Citation Format

Share Document