A novel two-dimensional coupled lattice Boltzmann model for incompressible flow in application of turbulence Rayleigh–Taylor instability

2017 ◽  
Vol 156 ◽  
pp. 97-102 ◽  
Author(s):  
Yikun Wei ◽  
Hua-Shu Dou ◽  
Yuehong Qian ◽  
Zhengdao Wang
1997 ◽  
Vol 46 (8) ◽  
pp. 1508
Author(s):  
NIE XIAO-BO ◽  
ZHANG ZHONG-ZHEN ◽  
FU HONG-YUAN ◽  
SHEN LONG-JUN ◽  
WANG JI-HAI

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 439 ◽  
Author(s):  
Sara Venturi ◽  
Silvia Di Francesco ◽  
Martin Geier ◽  
Piergiorgio Manciola

This work compares three forcing schemes for a recently introduced cascaded lattice Boltzmann shallow water model: a basic scheme, a second-order scheme, and a centred scheme. Although the force is applied in the streaming step of the lattice Boltzmann model, the acceleration is also considered in the transformation to central moments. The model performance is tested for one and two dimensional benchmarks.


2014 ◽  
Vol 68 (10) ◽  
pp. 1107-1122 ◽  
Author(s):  
Liangqi Zhang ◽  
Zhong Zeng ◽  
Haiqiong Xie ◽  
Xutang Tao ◽  
Yongxiang Zhang ◽  
...  

1998 ◽  
Vol 58 (5) ◽  
pp. 6861-6864 ◽  
Author(s):  
Xiaobo Nie ◽  
Yue-Hong Qian ◽  
Gary D. Doolen ◽  
Shiyi Chen

2009 ◽  
Vol 52 (4) ◽  
pp. 681-693 ◽  
Author(s):  
Chen Feng ◽  
Xu Ai-Guo ◽  
Zhang Guang-Cai ◽  
Gan Yan-Biao ◽  
Cheng Tao ◽  
...  

2011 ◽  
Vol 10 (3) ◽  
pp. 767-784 ◽  
Author(s):  
Amit Gupta ◽  
Ranganathan Kumar

AbstractA two-dimensional lattice Boltzmann model has been employed to simulate the impingement of a liquid drop on a dry surface. For a range of Weber number, Reynolds number and low density ratios, multiple phases leading to breakup have been obtained. An analytical solution for breakup as function of Reynolds and Weber number based on the conservation of energy is shown to match well with the simulations. At the moment breakup occurs, the spread diameter is maximum; it increases with Weber number and reaches an asymptotic value at a density ratio of 10. Droplet breakup is found to be more viable for the case when the wall is non-wetting or neutral as compared to a wetting surface. Upon breakup, the distance between the daughter droplets is much higher for the case with a non-wetting wall, which illustrates the role of the surface interactions in the outcome of the impact.


2009 ◽  
Vol 20 (11) ◽  
pp. 1803-1816 ◽  
Author(s):  
DANIELE CHIAPPINI ◽  
GINO BELLA ◽  
SAURO SUCCI ◽  
STEFANO UBERTINI

We present an application of the hybrid finite-difference Lattice-Boltzmann model, recently introduced by Lee and coworkers for the numerical simulation of complex multiphase flows.1–4 Three typical test-case applications are discussed, namely Rayleigh–Taylor instability, liquid droplet break-up and coalescence. The numerical simulations of the Rayleigh–Taylor instability confirm the capability of Lee's method to reproduce literature results obtained with previous Lattice-Boltzmann models for non-ideal fluids. Simulations of two-dimensional droplet breakup reproduce the qualitative regimes observed in three-dimensional simulations, with mild quantitative deviations. Finally, the simulation of droplet coalescence highlights major departures from the three-dimensional picture.


Sign in / Sign up

Export Citation Format

Share Document