A semi-analytical solution for consolidation of ground with local permeable pipe pile

2022 ◽  
Vol 143 ◽  
pp. 104590
Author(s):  
Tao Xiao ◽  
Pengpeng Ni ◽  
Zheng Chen ◽  
Jianxue Feng ◽  
Deqiang Chen ◽  
...  
2019 ◽  
Vol 33 (2) ◽  
pp. 251-267 ◽  
Author(s):  
Xuanming Ding ◽  
Lubao Luan ◽  
Changjie Zheng ◽  
Guoxiong Mei ◽  
Hang Zhou

Author(s):  
Yunpeng Zhang ◽  
Guosheng Jiang ◽  
Wenbing Wu ◽  
M. Hesham El Naggar ◽  
Hao Liu ◽  
...  

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1442
Author(s):  
Zhimeng Liang ◽  
Chunyi Cui ◽  
Kun Meng ◽  
Yu Xin ◽  
Huafu Pei ◽  
...  

Based on the Rayleigh–Love rod model and Novak’s plane-strain theory, an analytical method for the longitudinal vibration of a large-diameter pipe pile in radially heterogeneous soil is proposed. Firstly, the governing equations of the pile-soil system are established by taking both the construction disturbance effect and transverse inertia effect into account. Secondly, the analytical solution of longitudinal dynamic impedance at the pile top can be achieved by using Laplace transform and complex stiffness transfer techniques. Thirdly, the present analytical solution for dynamic impedance can also be performed in contrast with the existing solution to examine the correctness of the analytical method in this work. Further, the effect of pile Poisson’s ratio, pile diameter ratio as well as soil disturbed degree on the dynamic impedance are investigated. The results demonstrate that the Rayleigh–Love rod is appropriate for simulating the vibration of a large-diameter pipe pile in heterogeneous soils.


2017 ◽  
Vol 54 (7) ◽  
pp. 987-1001 ◽  
Author(s):  
Wenbing Wu ◽  
M. Hesham El Naggar ◽  
Maged Abdlrahem ◽  
Guoxiong Mei ◽  
Kuihua Wang

A soil–pile interaction model is developed to better represent the actual behavior of pipe piles undergoing dynamic testing. To correctly investigate the dynamic interaction mechanism of the pipe piles, the developed model introduces an additional mass to account for the soil plug. The governing equations of motion for the soil–pile system subjected to small deformations and strains are established considering plane strain conditions for the soil and one-dimensional wave propagation in the pile. The analytical solution of the vertical dynamic response of the pipe pile in the frequency domain is then obtained by employing a Laplace transform and transfer function technique. The corresponding quasi-analytical solution in the time domain for the pipe pile subjected to a vertical semi-sinusoidal exciting force is subsequently derived by means of a Fourier transform. A parameter sensitivity analysis of the additional mass model is carried out to determine the approximate range of the parameter values. Utilizing the developed solution, a parametric study is performed to illustrate the influence of the properties of the soil–pile system on the vertical dynamic response of the pipe pile. Finally, the validity of the additional mass model is validated by conducting a set of model tests, based on which the concept of “apparent wave velocity of pipe pile” (AWVPP) is also proposed.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fu-yao Zhao ◽  
Peng Xiang

Based on the mixture theory and previous work, the governing equation of the rotary vibration of rigid friction pipe pile in unsaturated soil is established. The analytical solution of this equation can be used to analyze the displacements and the complex stiffness of rotary vibration. The results show that the contribution to stiffness is as follows: solid < liquid < gas; and the contribution to rotational impedance is as follows: solid > liquid > gas. In addition, when the fluid permeability coefficient decreases, the stiffness decreases and the rotational impedance increases, but the influence is not obvious (especially the gas permeability coefficient). Four different kinds of degradation problems are also presented. Relevant conclusions can provide reference for engineering application.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jiang Xie

An analytical solution for the inner soil impedance of saturated soil to a horizontally vibrating large-radius pipe pile was presented. Based on the porous media theory and the assumption that the vertical normal stress is zero, the closed solution of the inner soil impedance of the saturated soil to the movement of the large-diameter pipe pile is obtained. This analytical solution considers the influence of saturated soil parameters on the impedance of the core soil of large-diameter pipe piles. Through numerical examples, the variation law of the inner soil impedance with pile radius, pile length, dimensionless frequency, compression coefficient, effective permeability coefficient, and porosity was analyzed and the pile radius corresponding to effective inner soil impedance is determined.


Sign in / Sign up

Export Citation Format

Share Document