An efficient healing agent for high temperature epoxy composites based upon tetra-glycidyl diamino diphenyl methane

Author(s):  
K. Pingkarawat ◽  
C. Dell’Olio ◽  
R.J. Varley ◽  
A.P. Mouritz
2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Aswathi A. Narayanan ◽  
R. S. Sudheesh

Hybrid PTFE/epoxy composites are widely used as materials for self-lubricating spherical bearing which are used in a high-temperature environment. In the present work, zirconium diboride (ZrB2) particles are incorporated to enhance high-temperature tribological properties of PTFE/epoxy composites. Pin on disc experiment is conducted with the aid of design of experiments (DOE) using central composite-response surface methodology (RSM). Under a load of 40 N and 1.25 m/s sliding speed, the optimum content 5.95 vol% of PTFE and 5.05 vol% of ZrB2, yields an ultralow coefficient of friction (COF) in conjunction with a low wear rate of the composite. The addition of ultra-high-temperature ceramic ZrB2 particles and solid lubricant PTFE is found to enhance the thermal conductivity and improve the heat transfer thereby reducing contact temperature. The use of optimum composition of the composite is capable of reducing the wear rate and high local temperature due to friction, implying its potential use as a self-lubricating spherical bearing liner material.


Wear ◽  
2021 ◽  
pp. 204109
Author(s):  
Hongyu Liang ◽  
Meijuan Xu ◽  
Xinjie Chen ◽  
Yongfeng Bu ◽  
Yanhu Zhang ◽  
...  

2010 ◽  
Vol 20 (1) ◽  
pp. 015024 ◽  
Author(s):  
Yan Chao Yuan ◽  
Yueping Ye ◽  
Min Zhi Rong ◽  
Haibin Chen ◽  
Jingshen Wu ◽  
...  

2014 ◽  
Vol 636 ◽  
pp. 73-77 ◽  
Author(s):  
Xin Hua Yuan ◽  
Qiu Su ◽  
Li Yin Han ◽  
Qian Zhang ◽  
Yan Qiu Chen ◽  
...  

Microencapsulated E-51 epoxy resin healing agent and phthalic anhydride latent curing agent were incorporated into E-44 epoxy matrix to prepare self-healing epoxy composites. When cracks were initiated or propagated in the composites, the microcapsules would be damaged and the healing agent released. As a result, the crack plane was healed through curing reaction of the released epoxy latent curing agent. In the paper, PUF/E-51 microcapsules were prepared by in-situ polymerization. The mechanical properties of the epoxy composites filled with the self-healing system were evaluated. The impact strength and self-healing efficiency of the composites are measured using a Charpy Impact Tester. Both the virgin and healed impact strength depends strongly on the concentration of microcapsules added into the epoxy matrix. Fracture of the neat epoxy is brittle, exhibiting a mirror fracture surface. Addition of PUF/E-51 microcapsules decreases the impact strength and induces a change in the fracture plane morphology to hackle markings. In the case of 8.0 wt% microcapsules and 3.0 wt% latent hardener, the self-healing epoxy exhibited 81.5% recovery of its original fracture toughness.


2007 ◽  
Vol 340-341 ◽  
pp. 161-166 ◽  
Author(s):  
Masamichi Kawai ◽  
Jian Qi Zhang

A macromechanics constitutive model to describe the anisotropic creep behavior of unidirectional composites under off-axis loading conditions is developed with a particular emphasis on accurate prediction of temporal creep softening due to stress variation. A viscoplasticity model that takes account of a combined isotropic and kinematic hardening is adopted as a base for this formulation, and the evolution equation of the kinematic hardening variable is elaborated to enhance the accuracy of prediction of the transient creep softening due to stress variation. Validity of the modified kinematic-hardening viscoplasticity model is evaluated by comparing with the experimental results on unidirectional T800H/3631 carbon/epoxy composites. It is demonstrated that the proposed model can adequately describe the off-axis creep behavior of the unidirectional CFRP laminate under constant and variable stress conditions.


Sign in / Sign up

Export Citation Format

Share Document