In-house recycling of carbon- and glass fibre-reinforced thermoplastic composite laminate waste into high-performance sheet materials

Author(s):  
Peter Kiss ◽  
Wolfgang Stadlbauer ◽  
Christoph Burgstaller ◽  
Hannes Stadler ◽  
Stefan Fehringer ◽  
...  
2020 ◽  
Vol 263 ◽  
pp. 121453 ◽  
Author(s):  
Xin-Feng Wei ◽  
Kai J. Kallio ◽  
Stefan Bruder ◽  
Martin Bellander ◽  
Richard T. Olsson ◽  
...  

2019 ◽  
Vol 27 (3(135)) ◽  
pp. 91-97
Author(s):  
Krishnaa Prabu ◽  
J. Srinivasan ◽  
C. Prakash

Flexible composites from high performance fibres were developed and targeted to replace the wall of existing rigid ceramic Particulate Filters. The composites are made from E Glass fibre webs of different density in the middle, with standard SiC Ceramic fibres webs in in the outer layers, forming a sandwich structure. Different needling densities were applied to form nonwoven composites, and they were stitched diagonally on the surface at specified intervals with continuous glass fibre filament yarn. In total, nine novel flexible composites were developed and evaluated for their structural, surface, mechanical and thermal properties. Based on the results and statistical analysis, the B2 sample is considered to be taken for further research to develop Particulate Matter (PM) filters.


2021 ◽  
Author(s):  
Chratien Mak

Glass fibre reinforced polymer (GFRP) reinforcements are a viable replacement for corroding steel rebars. GFRP rebar tension lap splices combined with ultra high performance concrete (UHPC) can improve the efficiency of materials and construction in bridge deck construction joints. This thesis investigates the bond performance of high modulus (HM) GFRP rebar splices using UHPC. UHPC slab/beams of 100 -170 MPa concrete having 150 - 300 mm tension splices were tested along with several beams constructed from prefabricated high strength concrete sections with central GFRP spliced UHPC joints. Theoretical analysis was also conducted to evaluate critical splice lengths. Based on comparisons with code design values, recommendations are made on potential failure modes and minimum splice lengths. The serviceability, fatigue, and environmental performance of GFRP in UHPC are also considered. Recommendations from this research will improve the safety and efficiency of GFRP tension lap joints used in bridge decks and other construction


2021 ◽  
Author(s):  
Chratien Mak

Glass fibre reinforced polymer (GFRP) reinforcements are a viable replacement for corroding steel rebars. GFRP rebar tension lap splices combined with ultra high performance concrete (UHPC) can improve the efficiency of materials and construction in bridge deck construction joints. This thesis investigates the bond performance of high modulus (HM) GFRP rebar splices using UHPC. UHPC slab/beams of 100 -170 MPa concrete having 150 - 300 mm tension splices were tested along with several beams constructed from prefabricated high strength concrete sections with central GFRP spliced UHPC joints. Theoretical analysis was also conducted to evaluate critical splice lengths. Based on comparisons with code design values, recommendations are made on potential failure modes and minimum splice lengths. The serviceability, fatigue, and environmental performance of GFRP in UHPC are also considered. Recommendations from this research will improve the safety and efficiency of GFRP tension lap joints used in bridge decks and other construction


Sign in / Sign up

Export Citation Format

Share Document