Nonlinear dynamic responses of fiber-metal laminated beam subjected to moving harmonic loads resting on tensionless elastic foundation

2017 ◽  
Vol 131 ◽  
pp. 253-259 ◽  
Author(s):  
Yang Chen ◽  
Yiming Fu ◽  
Jun Zhong ◽  
Chang Tao
2014 ◽  
Vol 36 (1) ◽  
pp. 27-47 ◽  
Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Dao Huy Bich ◽  
Dao Van Dung

This paper presents an analytical approach to investigate the nonlinear buckling of imperfect eccentrically stiffened functionally graded thin circular cylindrical shells subjected to axial compression and surrounded by an elastic foundation. Based on the classical thin shell theory with the geometrical nonlinearity in von Karman-Donnell sense, initial geometrical imperfection, the smeared stiffeners technique and Pasternak’s two-parameter elastic foundation, the governing equations of eccentrically stiffened functionally graded cylindrical shells are derived. The functionally graded cylindrical shells are reinforced by homogeneous ring and stringer stiffener system on internal and (or) external surface. The resulting equations are solved by the Galerkin method to obtain the explicit expression of static critical buckling load, post-buckling load-deflection curve and nonlinear dynamic motion equation. The nonlinear dynamic responses are found by using fourth order Runge-Kutta method. The dynamic critical buckling loads of shells are considered for step loading of infinite duration and linear-time compression. The obtained results show the effects of foundation, stiffeners and input factors on the nonlinear buckling behavior of these structures. 


2021 ◽  
pp. 109963622110219
Author(s):  
Vu Thi Thuy Anh ◽  
Vu Dinh Quang ◽  
Nguyen Dinh Duc ◽  
Pham Ngoc Thinh

By using the first order shear deformation theory (FSTD), this paper presents the results of the nonlinear dynamic behavior and natural frequencies of sandwich plate supported by elastic foundations in thermal environment and subjected to mechanical load and blast loading. This work takes advantage of the sandwich plate configuration with three layers: graphene platelet –reinforced composite (GPL) layer – auxetic layer – FGM layer, to analyze the dynamic and vibration problem, in which the auxetic core layer has a negative Poisson's ratios and the FGM layer is reinforced by stiffeners made of full metal or full ceramic depending on a situation of stiffeners at the metal-rich or ceramic-rich side of the plate respectively. Corresponding to the combination of material layers, the mechanical quantities of the problem are processed and calculated to suit the structure and reinforcement conditions. Numerical results are provided to explore the influences of geometrical parameters, elastic foundation parameters, GPL volume fraction, blast and mechanical loads on the nonlinear dynamic behavior and vibration of sandwich plate resting on elastic foundation and in thermal environment. In addition, the study is not only assumed that the material properties depend on environment temperature variation, but also considered the thermal stresses in the stiffeners, as well as considered the effect of imperfections in the original shape of the structure.


Sign in / Sign up

Export Citation Format

Share Document