Analysis of fracture toughness in mode II and fractographic study of composites based on Elium® 150 thermoplastic matrix

2019 ◽  
Vol 175 ◽  
pp. 107082 ◽  
Author(s):  
Lorena Cristina Miranda Barbosa ◽  
Daniel Brighenti Bortoluzzi ◽  
Antonio Carlos Ancelotti
2021 ◽  
Vol 28 (1) ◽  
pp. 382-393
Author(s):  
Mazaher Salamt-Talab ◽  
Fatemeh Delzendehrooy ◽  
Alireza Akhavan-Safar ◽  
Mahdi Safari ◽  
Hossein Bahrami-Manesh ◽  
...  

Abstract In this article, mode II fracture toughness ( G IIc {G}_{\text{IIc}} ) of unidirectional E-glass/vinyl ester composites subjected to sulfuric acid aging is studied at two different temperatures (25 and 90°C). Specimens were manufactured using the hand lay-up method with the [ 0 ] 20 {{[}0]}_{20} stacking sequence. To study the effects of environmental conditions, samples were exposed to 30 wt% sulfuric acid at room temperature (25°C) for 0, 1, 2, 4, and 8 weeks. Some samples were also placed in the same solution but at 90°C and for 3, 6, 9, and 12 days to determine the interlaminar fracture toughness at different aging conditions. Fracture tests were conducted using end notched flexure (ENF) specimens according to ASTM D7905. The results obtained at 25°C showed that mode II fracture toughness increases for the first 2 weeks of aging and then it decreases for the last 8 weeks. It was also found that the flexural modulus changes with the same trend. Based on the results of the specimens aged at 90°C, a sharp drop in fracture toughness and flexural modulus with a significant decrease in maximum load have been observed due to the aging. Finite element simulations were performed using the cohesive zone model (CZM) to predict the global response of the tested beams.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1881
Author(s):  
Kean Ong Low ◽  
Mahzan Johar ◽  
Haris Ahmad Israr ◽  
Khong Wui Gan ◽  
Seyed Saeid Rahimian Koloor ◽  
...  

This paper studies the influence of displacement rate on mode II delamination of unidirectional carbon/epoxy composites. End-notched flexure test is performed at displacement rates of 1, 10, 100 and 500 mm/min. Experimental results reveal that the mode II fracture toughness GIIC increases with the displacement, with a maximum increment of 45% at 100 mm/min. In addition, scanning electron micrographs depict that fiber/matrix interface debonding is the major damage mechanism at 1 mm/min. At higher speeds, significant matrix-dominated shear cusps are observed contributing to higher GIIC. Besides, it is demonstrated that the proposed rate-dependent model is able to fit the experimental data from the current study and the open literature generally well. The mode II fracture toughness measured from the experiment or deduced from the proposed model can be used in the cohesive element model to predict failure. Good agreement is found between the experimental and numerical results, with a maximum difference of 10%. The numerical analyses indicate crack jump occurs suddenly after the peak load is attained, which leads to the unstable crack propagation seen in the experiment.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2103
Author(s):  
Christophe Floreani ◽  
Colin Robert ◽  
Parvez Alam ◽  
Peter Davies ◽  
Conchúr M. Ó. Brádaigh

Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.


2019 ◽  
Vol 21 ◽  
pp. 146-153
Author(s):  
Kadir Bilisik ◽  
Gulhan Erdogan ◽  
Erdal Sapanci ◽  
Sila Gungor
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document