A strategy for effective recovery of salvianolic acid a from Salvia miltiorrhiza (Danshen) through multiple interactions

Author(s):  
Jun Qian ◽  
Xiaoqian Xu ◽  
Jiajia Su ◽  
Weihuan Zeng ◽  
Bing Han ◽  
...  
2018 ◽  
Vol 13 (10) ◽  
pp. 1934578X1801301
Author(s):  
Nguyen Huu Tung ◽  
Le Quoc Hung ◽  
Ha Van Oanh ◽  
Duong Thi Ly Huong ◽  
Phuong Thien Thuong ◽  
...  

Danshen ( Salvia miltiorrhiza Bunge) is one of the most used medicinal plants in the Oriental medicine and has been well studied for application in modern medicine. In our continuing study on chemical constituents of danshen cultivated in Vietnam, using chromatography separation resulted in the isolation of six phenolic compounds including a benzophenone, iriflophenone 2- O- α-L-rhamnopyranoside (1), and five phenolic acids including rosmarinic acid (2), rosmarinic acid methyl ester (3), rosmarinic acid ethyl ester (4), salvianolic acid A methyl ester (5) and salvianolic acid A ethyl ester (6) from the butanol portion of the danshen crude extract. Beside the typically main phenolic acid components, to our knowledge, iriflophenone 2- O- α-L-rhamnopyranoside (1) was first isolated from salvia sp. On biological testing, compound 1 showed strong antiproliferative activity on HL-60 leukemia cells with the IC50 of 8.9 μM; compounds 1 and 3–6 inhibited markedly nitric oxide production in lipopolysaccharide-treated RAW 264.7 cells.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1089 ◽  
Author(s):  
Quanxin Ma ◽  
Qinqin Yang ◽  
Jiaojiao Chen ◽  
Chen Yu ◽  
Lizong Zhang ◽  
...  

Salvianolic acid A (SAA), an important bioactive polyphenolic acid found in Salvia miltiorrhiza Bunge, may be used for treating metabolic disorders due to its anti-inflammatory activity. Since chronic inflammation plays an important role in type 2 diabetes mellitus (T2DM) complicated with atherosclerosis (AS), SAA may have beneficial effects on AS. Here, we evaluated the effects of SAA on metabolic disorders in male Zucker diabetic fatty (ZDF) rats induced by a high-fat diet and Vitamin D3 injections. Compared with the model group, the SAA high dosage (1 mg/kg) group exhibited decreased hemoglobin A1C levels but unchanged blood glucose levels. The disrupted lipid profiles were ameliorated by SAA, with significantly decreased levels of blood cholesterol, LDL-C and triglyceride. The protective effects of SAA against early AS were further confirmed by histopathological examination of aortic tissues. In addition, we observed that SAA decreased serum hs-CRP levels and suppressed the activation of NLRP3 inflammasome and NF-κB signaling in aortic tissues of ZDF rats. Collectively, our results demonstrate the potential of SAA to alleviate AS and T2DM in ZDF rats as a result of its anti-inflammatory effects.


2017 ◽  
Vol 45 (06) ◽  
pp. 1185-1200 ◽  
Author(s):  
Tianyi Yuan ◽  
Yucai Chen ◽  
Huifang Zhang ◽  
Lianhua Fang ◽  
Guanhua Du

Salvianolic acid A (SAA), a polyphenols acid, is a bioactive ingredient from a traditional Chinese medicine called Dan shen (Salvia Miltiorrhiza Bunge). According to previous studies, it was shown to have various effects such as anti-oxidative stress, antidiabetic complications and antipulmonary hypertension. This study aimed to investigate the effect of SAA on pulmonary arterial endothelial–mesenchymal transition (EndoMT) induced by hypoxia and the underlying mechanisms. Primary cultured human pulmonary arterial endothelial cells (HPAECs) were exposed to 1% O2 for 48[Formula: see text]h with or without SAA treatment. SAA treatment improved the morphology of HPAECs and inhibited the cytoskeleton remodeling. A total of 3[Formula: see text][Formula: see text]M SAA reduced migration distances from 262.2[Formula: see text][Formula: see text]m to 198.4[Formula: see text][Formula: see text]m at 24[Formula: see text]h and 344.8[Formula: see text][Formula: see text]m to 109.3[Formula: see text][Formula: see text]m at 48[Formula: see text]h. It was observed that the production of ROS in cells was significantly reduced by the treatment of 3[Formula: see text][Formula: see text]M SAA. Meanwhile, SAA alleviated the loss of CD31 and slightly inhibited the expression of [Formula: see text]-SMA. The mechanisms study shows that SAA treatment increased the phosphorylation levels of Smad1/5, but inhibited that of Smad2/3. Furthermore, SAA attenuated the phosphorylation levels of ERK and Cofilin, which were enhanced by hypoxia. Based on these results, our study indicated that SAA treatment can protect HPAECs from endoMT induced by hypoxia, which may perform via the inhibition on ROS production and further through the downstream effectors of BMPRs or TGF[Formula: see text]R including Smads, ERK and ROCK/cofilin pathways.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yalan Wu ◽  
Suowen Xu ◽  
Xiao Yu Tian

Salvia miltiorrhiza (Danshen), as an important traditional Chinese medicinal plant, has been used in China for the treatment of cardiovascular diseases for hundreds of years. Salvianolic acids (salvianolic acid A and salvianolic acid B) as the most abundant water-soluble component extracted from Salvia miltiorrhiza have attracted more and more attention from cardiovascular scientists due to its comprehensive cardiovascular actions. In vivo and in vitro studies have rendered salvianolic acid an excellent drug candidate for the treatment and prevention of cardiovascular diseases. In this review, we surveyed the protective effects of salvianolic acid A and salvianolic acid B against cardiovascular diseases and the pharmacological basis, providing a strong scientific rationale for elucidating the important role of Salvia miltiorrhiza in cardiovascular therapy. More importantly, we also hope to provide new inspiration and perspectives on the development and innovation of small-molecule cardiovascular drugs based on salvianolic acid.


2020 ◽  
Author(s):  
Florence Hui Ping TAN ◽  
Andrew Chung Jie Ting ◽  
Nazalan Najimudin ◽  
Nobumoto WATANABE ◽  
Ban Guan LEOW ◽  
...  

Abstract Background: Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder worldwide. Its pathogenesis involves the hallmark aggregation of amyloid-beta (Aβ). Of all the Aβ oligomers formed in the brain, Aβ42 has been found to be the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. Danshen water extract (DWE), obtained from the root of Salvia miltiorrhiza Bunge, was found to have a vast array of beneficial properties. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to attenuate Aβ42’s toxic effects.Methods: The compounds were first verified for their ability to diminish Aβ42 fibrillation using an in vitro activity assay. Since Aβ42 aggregation results in neuronal degeneration, the potential Aβ42 inhibitors were next evaluated on Aβ42-exposed PC12 neuronal cells as well as the Drosophila melanogaster model organism. Results: DWE, SalA and SalB were shown to be able to reduce fibrillation of Aβ42. When tested on PC12 neuronal cells, DWE, SalA and SalB ameliorated cells from cell death associated with Aβ42 exposure. Next, DWE and its components were tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. When human Aβ42 was expressed, the Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila. Conclusion: Collectively, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.Trial Registration: Not applicable


2020 ◽  
Author(s):  
Florence Hui Ping Tan ◽  
Andrew Chung Jie Ting ◽  
Nazalan Najimudin ◽  
Nobumoto Watanabe ◽  
Ghows Azzam

AbstractAlzheimer’s disease (AD) is the most common form of neurodegenerative disorder worldwide. Its pathogenesis involves the hallmark aggregation of amyloid-beta (Aβ). Of all the Aβ oligomers formed in the brain, Aβ42 has been found to be the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. With the ability to utilize various genetic manipulations, Drosophila melanogaster is ideal in analysing not only cellular characteristics, but also physiological and behavioural traits of human neurodegenerative diseases. Danshen water extract (DWE), obtained from the root of Salvia miltiorrhiza Bunge, was found to have a vast array of beneficial properties. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to ameliorate Aβ42’s effects. DWE, SalA and SalB were confirmed to be able to reduce fibrillation of Aβ42. As Aβ42 causes neurodegeneration on neurons, DWE, SalA and SalB were tested on Aβ42-treated PC12 neuronal cells and were shown to increase cell viability. DWE and its components were then tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. When human Aβ42 was expressed, the Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila. In conclusion, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.


Sign in / Sign up

Export Citation Format

Share Document