Using acoustic emission to assess shear strength degradation in FRP composites due to constant and variable amplitude fatigue loading

2008 ◽  
Vol 68 (3-4) ◽  
pp. 840-847 ◽  
Author(s):  
Theodore P. Philippidis ◽  
Theoni T. Assimakopoulou
2019 ◽  
Vol 125 ◽  
pp. 199-209 ◽  
Author(s):  
Jie Zhang ◽  
Louis Muys ◽  
Steven De Tender ◽  
Nahuel Micone ◽  
Stijn Hertelé ◽  
...  

2014 ◽  
Vol 891-892 ◽  
pp. 687-692 ◽  
Author(s):  
Paul White ◽  
David S. Mongru

Using ada/dNequation to predict fatigue crack growth for a variable amplitude loading sequence, requires converting the sequence into an equivalent series of constant amplitude cycles, which is sometimes achieved using the rainflow cycle counting technique. Rainflow counting views small intermediate cycles as an interruption to a larger cycle, in effect, the crack tip remembers the state of the larger cycle. This has been shown to be an effective technique in predicting fatigue growth rates for long cracks, but has not been extensively investigated for use in predicting the growth of small cracks. An investigation was made into the applicability of rainflow cycle counting for predicting the crack growth of small and long cracks created with variable amplitude fatigue loading in AA7050-T7451 plate, a common modern aircraft material. A series of coupons were tested with a number of different variable amplitude loading sequences which had distinct marker bands inserted to separate the individual segments of loading and enable them to be identified fractographically. For the sequences examined, which covered varying numbers of interrupted cycles and a staircase of three steps, the baseline and the rainflow loading segments within each sequence showed effectively the same rate of growth for the same stress intensity range in both the small and long crack coupons, demonstrating that rainflow cycle counting was a suitable cycle counting technique for both small and long cracks.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Bo Tao ◽  
Guanghua Wu ◽  
Zhouping Yin ◽  
Youlun Xiong

Hygrothermal environments can degrade anisotropic conductive adhesive (ACA) joints by weakening the shear strength of adhesive interface. In this paper, the shear strength degradation model of ACA joints under hygrothermal conditions was formulated through experimental testing and theoretical modeling. The shear strength degradation data were obtained from different hygrothermal aging tests and the ACA moisture properties were characterized for the corresponding hygrothermal conditions. Theoretical models considering the hygrothermal factors of T (temperature), RH (relative humidity), and t (time), were used to fit the shear strength degradation data. It was found that the inverse exponential law was the best candidate model to predict the degradation data. The shear strength degradation model of ACA joints under hygrothermal conditions was proposed, where the relationship of the S (shear strength) and the hygrothermal factors (T, RH, and t) was expressed in an analytical model. The degradation model was validated by experiments, and the model predictions agreed well with the test results.


Sign in / Sign up

Export Citation Format

Share Document