scholarly journals Measuring the notched compressive strength of composite laminates: Specimen size effects

2008 ◽  
Vol 68 (12) ◽  
pp. 2359-2366 ◽  
Author(s):  
J. Lee ◽  
C. Soutis
2021 ◽  
Vol 1 (3) ◽  
pp. 7-10
Author(s):  
İlker TEKİN

The compressive strength of concrete is the most basic and considerable material property while reinforced concrete structures are designed. It has become a problem to use this value, however, because the control specimen sizes and shapes from country to country may be dissimilar. The study presents the results of an experiment that examined the effect of specimen size on the different classes of compressive strengths of concrete. The study included casting specimens, cubes, and six different classes of the concrete mixture. Compression tests were conducted at the age of 3, 7, and 28 days on 150 mm & 100 mm cube samples. The fresh properties of concrete were measured by slump and unit weights tests. Moreover, the specimen size of concrete has an important role both on the compressive strength and capacity of a curing cabinet. Correlations between compressive strengths and sizes of specimens are compatible for classes of structural concretes. Therefore, it can be used in curing cabinet varying sizes of concretes like 150 mm & 100 mm cube samples. Although almost 220 concrete specimens sized of 150 mm cube can be poured in curing tank, roughly 585 concrete specimens can be poured with using 100 mm cube concrete specimens. The most convenient size resulted from this study is suggested as 100 mm sized cubic specimen that it promote to change the law for concrete both curing and compressive strength test.


1985 ◽  
Vol 19 (5) ◽  
pp. 629-634 ◽  
Author(s):  
V. Raman ◽  
S.V. Raj
Keyword(s):  

Author(s):  
Gap-Yong Kim ◽  
Muammer Koc ◽  
Jun Ni

Application of microforming in various research areas has received much attention due to the increased demand for miniature metallic parts that require mass production. For the accurate analysis and design of microforming process, proper modeling of material behavior at the micro/meso-scale is necessary by considering the size effects. Two size effects are known to exist in metallic materials. One is the “grain size” effect, and the other is the “feature/specimen size” effect. This study investigated the “feature/specimen size” effect and introduced a scaling model which combined both feature/specimen and grain size effects. Predicted size effects were compared with experiments obtained from previous research and showed a very good agreement. The model was also applied to forming of micro-features by coining. A flow stress model for Type 304 stainless steel taking into consideration the effect of the grain and feature size was developed and implemented into a finite element simulation tool for an accurate numerical analysis. The scaling model offered a simple way to model the size effect down to length scales of a couple of grains and extended the use of continuum plasticity theories to micro/meso-length scales.


2017 ◽  
Vol 11 (5) ◽  
pp. 729-741 ◽  
Author(s):  
T. Yalçinkaya ◽  
İ. Özdemir ◽  
I. Simonovski

2021 ◽  
Vol 79 (1) ◽  
pp. 61-77
Author(s):  
A Jayababu ◽  
V Arumugam ◽  
B Rajesh ◽  
C Suresh Kumar

This work focuses on the experimental investigation of indentation damage resistance in different stacking sequences of glass/epoxy composite laminates under cyclic loading on normal (0°) and oblique (20°) planes. The stacking sequence, such as unidirectional [0]12, angle ply [±45]6S, and cross ply [0/90]6S, were subjected to cyclic indentation loading and monitoring by acoustic emission testing (AE). The laminates were loaded at the center using a hemispherical steel indenter with a 12.7 mm diameter. The cyclic indentation loading was performed at displacements from 0.5 to 3 mm with an increment of 0.5 mm in each cycle. Subsequently, the residual compressive strength of the post-indented laminates was estimated by testing them under in-plane loading, once again with AE monitoring. Mechanical responses such as peak load, absorbed energy, stiffness, residual dent, and damage area were used for the quantification of the indentation-induced damage. The normalized AE cumulative counts, AE energy, and Felicity ratio were used for monitoring the damage initiation and propagation. Moreover, the discrete wavelet analysis of acoustic emission signals and fast Fourier transform enabled the calculation of the peak frequency content of each damage mechanism. The results showed that the cross-ply laminates had superior indentation damage resistance over angle ply and unidirectional (UD) laminates under normal and oblique planes of cyclic loading. However, the conclusion from the results was that UD laminates showed a better reduction in residual compressive strength than the other laminate configurations.


1984 ◽  
Vol 2 (1) ◽  
pp. 49-69 ◽  
Author(s):  
John W. Gillespie ◽  
R.Byron Pipes

Sign in / Sign up

Export Citation Format

Share Document