cyclic indentation
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Pascal Ostermayer ◽  
Werner Ankener ◽  
Bastian Blinn ◽  
Marek Smaga ◽  
Dietmar Eifler ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 923
Author(s):  
Sven Brück ◽  
Bastian Blinn ◽  
Katharina Diehl ◽  
Yannick Wissing ◽  
Julian Müller ◽  
...  

The locally occurring mechanisms of hydrogen embrittlement significantly influence the fatigue behavior of a material, which was shown in previous research on two different AISI 300-series austenitic stainless steels with different austenite stabilities. In this preliminary work, an enhanced fatigue crack growth as well as changes in crack initiation sites and morphology caused by hydrogen were observed. To further analyze the results obtained in this previous research, in the present work the local cyclic deformation behavior of the material volume was analyzed by using cyclic indentation testing. Moreover, these results were correlated to the local dislocation structures obtained with transmission electron microscopy (TEM) in the vicinity of fatigue cracks. The cyclic indentation tests show a decreased cyclic hardening potential as well as an increased dislocation mobility for the conditions precharged with hydrogen, which correlates to the TEM analysis, revealing courser dislocation cells in the vicinity of the fatigue crack tip. Consequently, the presented results indicate that the hydrogen enhanced localized plasticity (HELP) mechanism leads to accelerated crack growth and change in crack morphology for the materials investigated. In summary, the cyclic indentation tests show a high potential for an analysis of the effects of hydrogen on the local cyclic deformation behavior.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 744
Author(s):  
David Görzen ◽  
Florian Patrick Schäfke ◽  
Bastian Blinn ◽  
Christian Klose ◽  
Hans Jürgen Maier ◽  
...  

Given the complex process condition, extruded aluminum (Al) alloy tubes show locally pronounced differences in microstructure and mechanical properties, which can be influenced by subsequent heat treatment. In the present study, cyclic indentation tests (CITs) were conducted on extruded Al alloy EN AW-6082 to locally determine hardness and cyclic hardening potential, which was complemented with light optical microscopy. To analyze the influence of extrusion process and subsequent heat treatment, the EN AW-6082 tubes investigated were manufactured with extrusion ratios Ψ of 13:1 and 22:1, both in as-extruded and T6 heat-treated conditions. The results obtained for the as-extruded state showed significant differences of the local mechanical properties and demonstrated that an increased Ψ leads to higher hardness, caused by more pronounced plastic deformation during the manufacturing process. Moreover, an increase of hardness and cyclic hardening potential was observed after a T6 heat treatment, which also reduced the difference in hardness between the different extrusion ratios. Additionally, the pronounced local differences in hardness and cyclic hardening potential correlated with the local microstructure. The results demonstrated that CITs enable the analysis of local mechanical properties of extruded EN AW-6082 profiles, resulting from different extrusions ratios as well as subsequent heat treatment.


2021 ◽  
Vol 79 (1) ◽  
pp. 61-77
Author(s):  
A Jayababu ◽  
V Arumugam ◽  
B Rajesh ◽  
C Suresh Kumar

This work focuses on the experimental investigation of indentation damage resistance in different stacking sequences of glass/epoxy composite laminates under cyclic loading on normal (0°) and oblique (20°) planes. The stacking sequence, such as unidirectional [0]12, angle ply [±45]6S, and cross ply [0/90]6S, were subjected to cyclic indentation loading and monitoring by acoustic emission testing (AE). The laminates were loaded at the center using a hemispherical steel indenter with a 12.7 mm diameter. The cyclic indentation loading was performed at displacements from 0.5 to 3 mm with an increment of 0.5 mm in each cycle. Subsequently, the residual compressive strength of the post-indented laminates was estimated by testing them under in-plane loading, once again with AE monitoring. Mechanical responses such as peak load, absorbed energy, stiffness, residual dent, and damage area were used for the quantification of the indentation-induced damage. The normalized AE cumulative counts, AE energy, and Felicity ratio were used for monitoring the damage initiation and propagation. Moreover, the discrete wavelet analysis of acoustic emission signals and fast Fourier transform enabled the calculation of the peak frequency content of each damage mechanism. The results showed that the cross-ply laminates had superior indentation damage resistance over angle ply and unidirectional (UD) laminates under normal and oblique planes of cyclic loading. However, the conclusion from the results was that UD laminates showed a better reduction in residual compressive strength than the other laminate configurations.


2021 ◽  
Vol 79 (1) ◽  
pp. 61-77
Author(s):  
A. Jayababu ◽  
V. Arumugam ◽  
B. Rajesh ◽  
C. Suresh Kumar

This work focuses on the experimental investigation of indentation damage resistance in different stacking sequences of glass/epoxy composite laminates under cyclic loading on normal (0°) and oblique (20°) planes. The stacking sequence, such as unidirectional [0]12, angle ply [±45]6S, and cross ply [0/90]6S, were subjected to cyclic indentation loading and monitoring by acoustic emission testing (AE). The laminates were loaded at the center using a hemispherical steel indenter with a 12.7 mm diameter. The cyclic indentation loading was performed at displacements from 0.5 to 3 mm with an increment of 0.5 mm in each cycle. Subsequently, the residual compressive strength of the post-indented laminates was estimated by testing them under in-plane loading, once again with AE monitoring. Mechanical responses such as peak load, absorbed energy, stiffness, residual dent, and damage area were used for the quantification of the indentation-induced damage. The normalized AE cumulative counts, AE energy, and Felicity ratio were used for monitoring the damage initiation and propagation. Moreover, the discrete wavelet analysis of acoustic emission signals and fast Fourier transform enabled the calculation of the peak frequency content of each damage mechanism. The results showed that the cross-ply laminates had superior indentation damage resistance over angle ply and unidirectional (UD) laminates under normal and oblique planes of cyclic loading. However, the conclusion from the results was that UD laminates showed a better reduction in residual compressive strength than the other laminate configurations.


2020 ◽  
Vol 10 (18) ◽  
pp. 6461 ◽  
Author(s):  
Bastian Blinn ◽  
David Görzen ◽  
Torsten Fischer ◽  
Bernd Kuhn ◽  
Tilmann Beck

The 22 wt.% Cr, fully ferritic stainless steel Crofer®22 H has higher thermomechanical fatigue (TMF)- lifetime compared to advanced ferritic-martensitic P91, which is assumed to be caused by different damage tolerance, leading to differences in crack propagation and failure mechanisms. To analyze this, instrumented cyclic indentation tests (CITs) were used because the material’s cyclic hardening potential—which strongly correlates with damage tolerance, can be determined by analyzing the deformation behavior in CITs. In the presented work, CITs were performed for both materials at specimens loaded for different numbers of TMF-cycles. These investigations show higher damage tolerance for Crofer®22 H and demonstrate changes in damage tolerance during TMF-loading for both materials, which correlates with the cyclic deformation behavior observed in TMF-tests. Furthermore, the results obtained at Crofer®22 H indicate an increase of damage tolerance in the second half of TMF-lifetime, which cannot be observed for P91. Moreover, CITs were performed at Crofer®22 H in the vicinity of a fatigue crack, enabling to locally analyze the damage tolerance. These CITs show differences between crack edges and the crack tip. Conclusively, the presented results demonstrate that CITs can be utilized to analyze TMF-induced changes in damage tolerance.


2020 ◽  
Vol 52 (12) ◽  
pp. 859-863
Author(s):  
Yuka Takagawa ◽  
Morimasa Nakamura ◽  
Ken‐ichi Miura ◽  
Junpei Kobata

Sign in / Sign up

Export Citation Format

Share Document