scholarly journals Compressive strength of composite laminates with delamination-induced interaction of panel and sublaminate buckling modes

2017 ◽  
Vol 171 ◽  
pp. 326-334 ◽  
Author(s):  
Andrew T. Rhead ◽  
Richard Butler ◽  
Giles W. Hunt
2021 ◽  
Vol 79 (1) ◽  
pp. 61-77
Author(s):  
A Jayababu ◽  
V Arumugam ◽  
B Rajesh ◽  
C Suresh Kumar

This work focuses on the experimental investigation of indentation damage resistance in different stacking sequences of glass/epoxy composite laminates under cyclic loading on normal (0°) and oblique (20°) planes. The stacking sequence, such as unidirectional [0]12, angle ply [±45]6S, and cross ply [0/90]6S, were subjected to cyclic indentation loading and monitoring by acoustic emission testing (AE). The laminates were loaded at the center using a hemispherical steel indenter with a 12.7 mm diameter. The cyclic indentation loading was performed at displacements from 0.5 to 3 mm with an increment of 0.5 mm in each cycle. Subsequently, the residual compressive strength of the post-indented laminates was estimated by testing them under in-plane loading, once again with AE monitoring. Mechanical responses such as peak load, absorbed energy, stiffness, residual dent, and damage area were used for the quantification of the indentation-induced damage. The normalized AE cumulative counts, AE energy, and Felicity ratio were used for monitoring the damage initiation and propagation. Moreover, the discrete wavelet analysis of acoustic emission signals and fast Fourier transform enabled the calculation of the peak frequency content of each damage mechanism. The results showed that the cross-ply laminates had superior indentation damage resistance over angle ply and unidirectional (UD) laminates under normal and oblique planes of cyclic loading. However, the conclusion from the results was that UD laminates showed a better reduction in residual compressive strength than the other laminate configurations.


1984 ◽  
Vol 2 (1) ◽  
pp. 49-69 ◽  
Author(s):  
John W. Gillespie ◽  
R.Byron Pipes

2013 ◽  
Vol 710 ◽  
pp. 136-141
Author(s):  
Li Jun Wei ◽  
Fang Lue Huang ◽  
Hong Peng Li

Sandwich composite laminates structure is a classic application of composite material on actual aircraft structural. Dealing with low-velocity impact damage and residual compressive strength of sandwich composite laminates, explicit finite element method of ABAQUS/Explicit software was adopted to simulate low-velocity impact and compression process. Impact response and invalidation on compression between sandwich composite laminates with different core materials and regular composite laminates were compared. The simulation results indicated that softer core materials can absorb more impact energy, reduce the structure damage and enhance the residual compressive strength after impact.


2017 ◽  
Vol 4 (5) ◽  
pp. 16-00710-16-00710 ◽  
Author(s):  
Yukihiro SATO ◽  
Kazuhiro MIURA ◽  
Masahiro KASHIWAGI ◽  
Masayoshi SUHARA ◽  
Yoshinori NONAKA ◽  
...  

2001 ◽  
Author(s):  
Jianping Lu ◽  
Golam M. Newaz ◽  
Ronald F. Gibson

Abstract Aluminum hat section, either adhesively bonded or unbonded, experiences buckling, post buckling and plastic collapse when axially compressed. However, there exist obvious differences in the load response between the bonded and unbonded hat sections. Finite element eigenvalue buckling analysis is carried out to predict the buckling load and mode. Experiments show that when adhesively bonded hat sections begin to buckle there is a transformation from the first buckling mode to the higher ones, while the unbonded hat sections develop the post buckling based on the lowest buckling mode. The different buckling modes result in not only different buckling loads but different peak loads of the hat sections as well. Finally, the ultimate compressive strength formulae are proposed for the hat sections.


2012 ◽  
Vol 583 ◽  
pp. 203-206
Author(s):  
Hai Ming Hong ◽  
Ming Li ◽  
Jian Yu Zhang ◽  
Yi Ning Zhang

A series of low-velocity impact tests and residual compressive strength tests after impacts on CCF300/QY8911 composite materials were carried out to study the mechanism of compression failure of the laminates after low-velocity impact. The curves of impact energy verse dent depth and impact energy verse the damage area was obtained. And the residual compressive strength and stiffness after impact verse damage parameters were analyzed. The results showed that when the impact energy exceeded the inflection point, as the impact energy increased, the dent depth on the impacted surface of the laminates notably increased while the damage area of the internal layers merely increased slowly. If the impact energy was continued to increase, the expansion of the laminates' internal damage mainly consisted of fiber breaks. The main reason for the decrease in compressive performance of composite laminates was inside delamination between layers, while in the case in which impact energy exceeded the inflection point, there were no obvious changes in delamination damage area for different energy, so the residual compressive performance kept almost stable.


2005 ◽  
Vol 297-300 ◽  
pp. 1303-1308 ◽  
Author(s):  
Jae Hoon Kim ◽  
Duck Hoi Kim ◽  
Hu Shik Kim ◽  
Byoung Jun Park

The objectives of this study are to evaluate the internal damage and compressive residual strength of composite laminate by impact loading. To investigate the environmental effects, as-received and accelerated-aged glass/phenolic laminates are used. UT C-Scan is used to determine the impact damage characteristics and CAI tests are carried out to evaluate quantitatively the reduction of compressive strength by impact loading. The damage modes of the woven glass/phenolic laminates are evaluated. In the case of the accelerated-aged laminates, as aging time increases, initial failure energy and residual compressive strength decrease.


Sign in / Sign up

Export Citation Format

Share Document