Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites

2010 ◽  
Vol 70 (1) ◽  
pp. 130-135 ◽  
Author(s):  
Lu Zhang ◽  
Menghe Miao
2011 ◽  
Vol 675-677 ◽  
pp. 427-430 ◽  
Author(s):  
Jin Hua Jiang ◽  
Ze Xing Wang ◽  
Nan Liang Chen

In the past decade, natural fibre composites with thermoplastic matrices had attracted many composites manufactures for the superiority of lightweight and low-cost. A major challenge for natural fibre composites was to achieve high mechanical performance at a competitive price. Composites constructed from yarn and fabric structure preforms were better than composites made from random nonwoven mats. However, the twist structure of conventional ring spun yarns prevented the full utilization of fibre mechanical properties in the final composites. In this paper, the wrapped yarns were produced by wrap spun method with flax and polypropylene (PP), in which all flax fibres were twistless, then woven to be fabric preforms. The PP fibres served as a carrier for flax fibres during processing and became the polymer matrix in the final composites. The homogenous distribution of fibre and thermoplastic matrix in preforms could be achieved before hot pressing, so that not lead to impregnate difficultly, and prevented damage to the reinforced nature fibres during processing. Composites made from the wrapped yarn demonstrated significant tensile and peeling properties. The fabric structures (include plain, twill, and basket weave) and yarn tensile orientation (in 0°, 90°, 45°), had great influence on tensile strength and elongation of preforms. The cavity thickness of hot pressing mould had different influence on the tensile strength and peeling strength of thermoplastic composites, and the mechanical properties were superior when the thickness was 0.8-1.2 mm. The microstructure of thermoplastic composites showed uniform infiltration between layers, and had good bonding interface between flax fibre and PP matrix in composites.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4581
Author(s):  
Baljinder K. Kandola ◽  
S. Ilker Mistik ◽  
Wiwat Pornwannachai ◽  
A. Richard Horrocks

Biocomposites comprising a combination of natural fibres and bio-based polymers are good alternatives to those produced from synthetic components in terms of sustainability and environmental issues. However, it is well known that water or aqueous chemical solutions affect natural polymers/fibres more than the respective synthetic components. In this study the effects of water, salt water, acidic and alkali solutions ageing on water uptake, mechanical properties and flammability of natural fibre-reinforced polypropylene (PP) and poly(lactic acid) (PLA) composites were compared. Jute, sisal and wool fibre- reinforced PP and PLA composites were prepared using a novel, patented nonwoven technology followed by the hot press method. The prepared composites were aged in water and chemical solutions for up to 3 week periods. Water absorption, flexural properties and the thermal and flammability performances of the composites were investigated before and after ageing each process. The effect of post-ageing drying on the retention of mechanical and flammability properties has also been studied. A linear relationship between irreversible flexural modulus reduction and water adsorption/desorption was observed. The aqueous chemical solutions caused further but minor effects in terms of moisture sorption and flexural modulus changes. PLA composites were affected more than the respective PP composites, because of their hydrolytic sensitivity. From thermal analytical results, these changes in PP composites could be attributed to ageing effects on fibres, whereas in PLA composite changes related to both those of fibres present and of the polymer. Ageing however, had no adverse effect on the flammability of the composites.


2004 ◽  
pp. 27-32
Author(s):  
Timothy Galea ◽  
Tony Mills ◽  
Rex Halliwell ◽  
Krishnan Jayaraman

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2560 ◽  
Author(s):  
Imen Gnaba ◽  
Peng Wang ◽  
Damien Soulat ◽  
Fatma Omrani ◽  
Manuela Ferreira ◽  
...  

To date, nonwoven fabrics made with natural fibres and thermoplastic commingled fibres have been extensively used in the composite industry for a wide variety of applications. This paper presents an innovative study about the effect of the manufacturing parameters on the mechanical behaviour of flax/PP nonwoven reinforced composites. The mechanical properties of nonwoven fabric reinforced composites are related directly to the ones of dry nonwoven reinforcements, which depend strongly on the nonwoven manufacturing parameters, such as the needle-punching and areal densities. Consequently, the influence of these manufacturing parameters will be analysed through the tensile and flexural properties. The results demonstrated that the more areal density the nonwoven fabric has, the more the mechanical behaviour can be tested for composites. By contrast, it has a complex influence on needle-punching density on the load-strain and bending behaviours at the composite scale.


2008 ◽  
Vol 47-50 ◽  
pp. 1141-1144 ◽  
Author(s):  
Krishnan Jayaraman ◽  
Rex Halliwell

Natural fibres, such as sisal, flax and woodfibres, are relatively inexpensive and originate from renewable resources. Thermoplastic polymers, such as polypropylene (PP), high density polyethylene (HDPE) and waste plastics, possess shorter manufacturing cycle times and reprocessability. Natural fibre-reinforced thermoplastic composite materials exhibit favourable values of modulus and strength when the fibres are properly compounded with the polymers. Common methods for manufacturing natural fibre-reinforced thermoplastic composites, injection moulding and extrusion, require pre-compounding of the fibres and the thermoplastic due to the large difference in densities of the loose fibres and thermoplastic materials. Development and analysis of a screwless extruder that employs a reliable and low technology process for melt blending natural fibres and thermoplastic polymers is the main objective of this study.


2014 ◽  
Vol 33 (11) ◽  
pp. 993-999 ◽  
Author(s):  
Sabir Ali ◽  
Pramendra Kumar Bajpai ◽  
Inderdeep Singh ◽  
Apurbba Kumar Sharma

2011 ◽  
Vol 194-196 ◽  
pp. 1470-1475 ◽  
Author(s):  
Lu Zhang ◽  
Gu Huang ◽  
Zhen Zhong Liu

Composites made from yarns perform better than composites made from random nonwoven mats. However, the twist structure of conventional ring spun yarns prevents the full utilization of fiber mechanical properties in the final composites. We produced flax/pp wrap yarns in which all flax fibers were twistless. Composites made from the wrap yarn gave a significant improvement of flexural properties. Most natural fibers, such as decorticated hemp, cannot be efficiently made into yarns because of their lack of cohesion. Adding pp fibers to decorticated hemp improved textile processing performance. The pp fibers served as a carrier for the natural fibers during processing and became the polymer matrix in the final composites.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4607-4612 ◽  
Author(s):  
SRIDHAR PATHI ◽  
KRISHNAN JAYARAMAN

Natural fibre reinforced thermoplastic composites find a wide array of applications in the automobile, building and construction industries. These composites are mostly produced by injection moulding or extrusion through properly designed dies. During these production processes, the shear forces exerted by the screw or ram leads to the degradation of the natural fibres. A screwless extruder that minimises fibre degradation and employs a reliable and low technology process has already been developed. However, the fibre degradation caused by the screwless extruder has not been compared with that of the conventional extruders. So, this study is focused on the influence of extrusion processes on the degradation of natural fibres in thermoplastic composites. Sisal fibres of 10 mm length were extruded with polypropylene, to furnish extrudates with a fibre mass fraction of 25%, using conventional single screw and screwless extruders. Polypropylene in the extrudates was dissolved in Xylene in a Sohxlet process; the fibres that were extracted were analysed for length variations. While fibre degradation in the form of fibre length variation is similar in both cases, this can be minimised in screwless extrusion by extending the gap between the front face of the cone and the orifice plate.


Sign in / Sign up

Export Citation Format

Share Document