scholarly journals Overcoming the structural versus energy dissipation trade-off in highly crosslinked polymer networks: Ultrahigh strain rate response in polydicyclopentadiene

2015 ◽  
Vol 114 ◽  
pp. 17-25 ◽  
Author(s):  
Daniel B. Knorr ◽  
Kevin A. Masser ◽  
Robert M. Elder ◽  
Timothy W. Sirk ◽  
Mark D. Hindenlang ◽  
...  
2020 ◽  
Vol 38 (9A) ◽  
pp. 1396-1405
Author(s):  
Arwa F. Tawfeeq ◽  
Matthew R. Barnett

The development in the manufacturing of micro-truss structures has demonstrated the effectiveness of brazing for assembling these sandwiches, which opens new opportunities for cost-effective and high-quality truss manufacturing. An evolving idea in micro-truss manufacturing is the possibility of forming these structures in different shapes with the aid of elevated temperature. This work investigates the formability and elongation of aluminum alloy sheets typically used for micro-truss manufacturing, namely AA5083 and AA3003. Tensile tests were performed at a temperature in the range of 25-500 ○C and strain rate in the range of 2x10-4 -10-2 s-1. The results showed that the clad layer in AA3003 exhibited an insignificant effect on the formability and elongation of AA3003. The formability of the two alloys was improved significantly with values of m as high as 0.4 and 0.13 for AA5083 and AA3003 at 500 °C. While the elongation of both AA5083 and AA3003 was improved at a higher temperature, the elongation of AA5083 was inversely related to strain rate. It was concluded that the higher the temperature is the better the formability and elongation of the two alloys but at the expense of work hardening. This suggests a trade-off situation between formability and strength. 


2007 ◽  
Vol 129 (3) ◽  
pp. 506-507 ◽  
Author(s):  
Jinqi Xu ◽  
David A. Bohnsack ◽  
Michael E. Mackay ◽  
Karen L. Wooley

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xinxi Liu ◽  
Yu Li ◽  
Fujun Zhao ◽  
Yanming Zhou ◽  
Weiwei Wang ◽  
...  

The properties of anchored surrounding rock may vary considerably under complex geological and stress conditions, especially dynamic loading in deep mining. Therefore, comprehensive study of the reinforced mechanism is required to prevent failures associated with deep mining. In this paper, with sandstone as matrix and steel bar as bolt, the dynamic compression test of reinforced rock was carried out by using a 50 mm rod diameter split Hopkinson pressure bar (SHPB) test device. The mechanical and energy characteristics of reinforced rock under dynamic loading were analyzed. The results show that the dynamic strength of reinforced sample is greater than that of unreinforced sample and increases with the increase of the strain rate. The reflected energy and absorbed energy increase with the increase of incident energy, while the transmitted energy increases slightly. The higher the strain rate, the larger the energy dissipation rate and the higher the degree of fragmentation. It shows that the energy dissipation characteristic reflects the internal damage process to some extent. Compared with the results of unreinforced samples, the reflected energy of reinforced samples significantly increases and the absorbed energy will significantly decrease. It can be seen that the bolt can reduce absorbed energy of surrounding rock, thereby improving the stability of roadway surrounding rock. The results may provide reference for the stability of deep roadway and support design.


RSC Advances ◽  
2015 ◽  
Vol 5 (23) ◽  
pp. 17514-17518 ◽  
Author(s):  
Roberto Martin ◽  
Alaitz Rekondo ◽  
Alaitz Ruiz de Luzuriaga ◽  
Antxon Santamaria ◽  
Ibon Odriozola

Is it possible to blend two immiscible polymer networks starting from their cured state? A simple thermomechanical approach permits blending two dynamically crosslinked polymer networks, to give blends with superior mechanical properties.


2011 ◽  
Vol 46 (9) ◽  
pp. 1051-1065 ◽  
Author(s):  
Wonsuk Kim ◽  
Alan Argento ◽  
Ellen Lee ◽  
Cynthia Flanigan ◽  
Daniel Houston ◽  
...  

The high strain-rate constitutive behavior of polymer composites with various natural fibers is studied. Hemp, hemp/glass hybrid, cellulose, and wheat straw-reinforced polymeric composites have been manufactured, and a split-Hopkinson pressure bar apparatus has been designed to measure the dynamic stress–strain response of the materials. Using the apparatus, compressive stress–strain curves have been obtained that reveal the materials’ constitutive characteristics at strain rates between 600 and 2400 strain/s. Primary findings indicate that natural fibers in thermoset composites dissipate energy at lower levels of stress and higher strain than glass-reinforced composites. In the case of thermoplastic matrices, the effect on energy dissipation of natural fibers vs. conventional talc reinforcements is highly dependent on resin properties. Natural fibers in polypropylene homopolymer show improved reinforcement but have degraded energy dissipation compared to talc. Whereas in polypropylene copolymer, natural fibers result in improved energy dissipation compared to talc. These data are useful for proper design, analysis, and simulation of lightweight biocomposites.


Sign in / Sign up

Export Citation Format

Share Document