Mixing the immiscible: blends of dynamic polymer networks

RSC Advances ◽  
2015 ◽  
Vol 5 (23) ◽  
pp. 17514-17518 ◽  
Author(s):  
Roberto Martin ◽  
Alaitz Rekondo ◽  
Alaitz Ruiz de Luzuriaga ◽  
Antxon Santamaria ◽  
Ibon Odriozola

Is it possible to blend two immiscible polymer networks starting from their cured state? A simple thermomechanical approach permits blending two dynamically crosslinked polymer networks, to give blends with superior mechanical properties.

Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 792 ◽  
Author(s):  
Daria Guseva ◽  
Vladimir Rudyak ◽  
Pavel Komarov ◽  
Boris Bulgakov ◽  
Alexander Babkin ◽  
...  

We studied the static and dynamic mechanical properties of crosslinked polymer matrices using multiscale simulations and experiments. We continued to develop the multiscale methodology for generating atomistic polymer networks, and applied it to the case of phthalonitrile resin. The mechanical properties of the resulting networks were analyzed using atomistic molecular dynamics (MD) and dissipative particle dynamics (DPD). The Young’s and storage moduli increased with conversion, due both to the appearance of a network of covalent bonds, and to freezing of degrees of freedom and lowering of the glass transition temperature during crosslinking. The simulations’ data showed good quantitative agreement with experimental dynamic mechanical analysis measurements at temperatures below the glass transition. The data obtained in MD and DPD simulations at elevated temperatures were conformable. This makes it possible to use the suggested approach for the prediction of mechanical properties of a broad range of polymer matrices, including ones with high structural heterogeneity.


Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1656
Author(s):  
Carla Huerta-López ◽  
Jorge Alegre-Cebollada

Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takuya Ohzono ◽  
Kaoru Katoh ◽  
Hiroyuki Minamikawa ◽  
Mohand O. Saed ◽  
Eugene M. Terentjev

AbstractNematic liquid crystal elastomers (N-LCE) exhibit intriguing mechanical properties, such as reversible actuation and soft elasticity, which manifests as a wide plateau of low nearly-constant stress upon stretching. N-LCE also have a characteristically slow stress relaxation, which sometimes prevents their shape recovery. To understand how the inherent nematic order retards and arrests the equilibration, here we examine hysteretic stress-strain characteristics in a series of specifically designed main-chain N-LCE, investigating both macroscopic mechanical properties and the microscopic nematic director distribution under applied strains. The hysteretic features are attributed to the dynamics of thermodynamically unfavoured hairpins, the sharp folds on anisotropic polymer strands, the creation and transition of which are restricted by the nematic order. These findings provide a new avenue for tuning the hysteretic nature of N-LCE at both macro- and microscopic levels via different designs of polymer networks, toward materials with highly nonlinear mechanical properties and shape-memory applications.


Soft Matter ◽  
2016 ◽  
Vol 12 (24) ◽  
pp. 5420-5428 ◽  
Author(s):  
Ming Zhong ◽  
Yi-Tao Liu ◽  
Xiao-Ying Liu ◽  
Fu-Kuan Shi ◽  
Li-Qin Zhang ◽  
...  

2017 ◽  
Vol 09 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Xingguo Li ◽  
Bingbing An ◽  
Dongsheng Zhang

Interfacial behavior in the microstructure and the plastic deformation in the protein matrix influence the overall mechanical properties of biological hard tissues. A cohesive finite element model has been developed to investigate the inelastic mechanical properties of bone-like biocomposites consisting of hard mineral crystals embedded in soft biopolymer matrix. In this study, the complex interaction between plastic dissipation in the matrix and bonding properties of the interface between minerals and matrix is revealed, and the effect of such interaction on the toughening of bone-like biocomposites is identified. For the case of strong and intermediate interfaces, the toughness of biocomposites is controlled by the post yield behavior of biopolymer; the matrix with low strain hardening can undergo significant plastic deformation, thereby promoting enhanced fracture toughness of biocomposites. For the case of weak interfaces, the toughness of biocomposites is governed by the bonding property of the interface, and the post-yield behavior of biopolymer shows negligible effect on the toughness. The findings of this study help to direct the path for designing bioinspired materials with superior mechanical properties.


2004 ◽  
Vol 370 (1-2) ◽  
pp. 288-292 ◽  
Author(s):  
A Bartolotta ◽  
G Di Marco ◽  
M Lanza ◽  
G Carini ◽  
G D’Angelo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document