Theoretical modeling of the temperature dependent tensile strength for particulate-polymer composites

2019 ◽  
Vol 184 ◽  
pp. 107881 ◽  
Author(s):  
Ying Li ◽  
Weiguo Li ◽  
Xi Lin ◽  
Mengqing Yang ◽  
Ziyuan Zhao ◽  
...  
2013 ◽  
Vol 592-593 ◽  
pp. 647-650 ◽  
Author(s):  
Małgorzata Lenart

Cement – polymer composites are nowadays widely used in repair systems not only in case of concrete or reinforced concrete constructions but also in masonry. Polymers addition for example already at 5% m.c. modifies the structure of the cement – polymer composite in a way that many of the mechanical properties such as flexural strength, tensile strength or adhesion to substrates are improved. The paper presents the results of tests such as flexural, compressive or adhesion strength to ceramic substrate of hardened cement mortars with different composition, as well as selected cement mortars modified by two polymers: polyvinyl alcohol and styrene – butadiene polymer dosed at 5 % m.c. Four types of cement mortars modified by lime (component used in historical constructions as well as in contemporary masonry mortars) are also examined for comparison.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


Sign in / Sign up

Export Citation Format

Share Document