Higher-order beam bending theory for static, free vibration, and buckling analysis of thin-walled rectangular hollow section beams

2021 ◽  
Vol 248 ◽  
pp. 106494
Author(s):  
Soomin Choi ◽  
Yoon Young Kim
2018 ◽  
Vol 18 (04) ◽  
pp. 1850049 ◽  
Author(s):  
Smita Parida ◽  
Sukesh Chandra Mohanty

This paper deals with the free vibration and buckling analysis of functionally graded material (FGM) plates, resting on the Winkler–Pasternak elastic foundation. The higher order shear deformation plate theory (HSPT) is adopted for the realistic variation of transverse displacement through the thickness, using the power law distribution to describe the variation of the material properties. Both the effects of shear deformation and rotary inertia are considered. In the present model, the plate is discretised into [Formula: see text] eight noded serendipity quadratic elements with seven nodal degrees of freedom (DOFs). The validation study is carried out by comparing the calculated values with those given in the literature. The effects of various parameters like the Winkler and Pasternak modulus coefficients, volume fraction index, aspect ratio, thickness ratio and different boundary conditions on the behaviour of the FGM plates are studied.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
G. Giunta ◽  
S. Belouettar

This paper addresses a free vibration analysis of thin-walled isotropic beams via higher-order refined theories. The unknown kinematic variables are approximated along the beam cross section as aN-order polynomial expansion, whereNis a free parameter of the formulation. The governing equations are derived via the dynamic version of the Principle of Virtual Displacements and are written in a unified form in terms of a “fundamental nucleus.” This latter does not depend upon order of expansion of the theory over the cross section. Analyses are carried out through a closed form, Navier-type solution. Simply supported, slender, and short beams are investigated. Besides “classical” modes (such as bending and torsion), several higher modes are investigated. Results are assessed toward three-dimensional finite element solutions. The numerical investigation shows that the proposed Unified Formulation yields accurate results as long as the appropriate approximation order is considered. The accuracy of the solution depends upon the geometrical parameters of the beam.


2017 ◽  
Vol 2017 ◽  
pp. 1-33 ◽  
Author(s):  
Tan Li ◽  
Xu Ma ◽  
Wanji Chen ◽  
Xili Jing

This paper is devoted to develop a new 8-node higher-order hybrid stress element (QH8) for free vibration and buckling analysis based on the Mindlin/Reissner plate theory. In particular, a simple explicit expression of a refine method with an adjustable constant is introduced to improve the accuracy of the analysis. A combined mass matrix for natural frequency analysis and a combined geometric stiffness matrix for buckling analysis are obtained using the refined method. It is noted that numerical examples are presented to show the validity and efficiency of the present element for free vibration and buckling analysis of plates. Furthermore, satisfactory accuracy for thin and moderately thick plates is obtained and it is free from shear locking for thin plate analysis and can pass the nonzero shear stress patch test.


Sign in / Sign up

Export Citation Format

Share Document