scholarly journals Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber

2006 ◽  
Vol 75 (1-4) ◽  
pp. 496-500 ◽  
Author(s):  
A. Fakhru’l-Razi ◽  
M.A. Atieh ◽  
N. Girun ◽  
T.G. Chuah ◽  
M. El-Sadig ◽  
...  

2013 ◽  
Vol 832 ◽  
pp. 338-343 ◽  
Author(s):  
Azira Abd. Aziz ◽  
A.I.H. Habibah Dayang ◽  
Abu Bakar Suriani ◽  
Mohamad Rusop Mahmood

Multi-walled carbon nanotubes (MWNTs) were used to prepare epoxidised natural rubber (ENR) nanocomposites. Our attempt to achieve nanostructures in MWNTs/ENR nanocomposites were formed by incorporating carbon nanotubes in a polymeric solution. Using this technique, nanotubes can be dispersed homogeneously in the ENR matrix with an attempt to increase the mechanical properties of these nanocomposites. The properties of the nanocomposites such as volume resistivity, tensile strength and tensile modulus were studied. Mechanical test results show an increase in the initial modulus for up to 14 times in relation to pure ENR. In addition to mechanical testing, the dispersion state of the MWNTs into ENR was studied by field emission electron microscopy (FESEM) and atomic force microscope (AFM) in order to understand the morphology of the resulting system. According to the present study, application of the physical and mechanical properties of carbon nanotubes to ENR can result in rubber products which have improved mechanical, physical and chemical properties.



2006 ◽  
Vol 14 (4) ◽  
pp. 641-649 ◽  
Author(s):  
Muataz Ali Atieh ◽  
Nazlia Girun ◽  
El‐Sadig Mahdi ◽  
Hairani Tahir ◽  
Chuah Teong Guan ◽  
...  


2011 ◽  
pp. 821-828 ◽  
Author(s):  
Thotsaphon Threrujirapapong ◽  
Takahiro Mimoto ◽  
Katsuyoshi Kondoh ◽  
Junko Umeda ◽  
Bunshi Fugetsu




Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4149
Author(s):  
Laura M. Echeverry-Cardona ◽  
Natalia Álzate ◽  
Elisabeth Restrepo-Parra ◽  
Rogelio Ospina ◽  
Jorge H. Quintero-Orozco

This study shows the energy optimization and stabilization in the time of solutions composed of H2O + TX-100 + Multi-Wall Carbon Nanotubes (MWCNTs), used to improve the mechanical properties of Portland cement pastes. For developing this research, sonication energies at 90, 190, 290, 340, 390, 440, 490 and 590 J/g are applied to a colloidal substance (MWCNTs/TX-100 + H2O) with a molarity of 10 mM. Raman spectroscopy analyses showed that, for energies greater than 440 J/g, there are ruptures and fragmentation of the MWCNTs; meanwhile at energies below 390 J/g, better dispersions are obtained. The stability of the dispersion over time was evaluated over 13 weeks using UV-vis spectroscopy and Zeta Potential. With the most relevant data collected, sonication energies of 190, 390 and 490 J/g, at 10 mM were selected at the first and the fourth week of storage to obtain Portland cement specimens. Finally, we found an improvement of the mechanical properties of the samples built with Portland cement and solutions stored for one and four weeks; it can be concluded that the MWCNTs improved the hydration period.



2008 ◽  
Vol 1143 ◽  
Author(s):  
Paola Ciselli ◽  
Lan Lu ◽  
James JC Busfield ◽  
Ton Peijs

ABSTRACTElastomeric composites based on Ethylene-Propylene-Diene-Monomer (EPDM) filled with multi-wall carbon nanotubes (MWNTs) have been prepared, showing improved mechanical properties as compared to the pure EPDM matrix. The results have been discussed using the Guth model. The main focus of the study was on the electrical behavior of the nanocomposites, in view of possible sensor applications. A linear relation has been found between conductivity and deformations up to 10% strain, which means that such materials could be used for applications such as strain or pressure sensors. Cyclic experiments were conducted to establish whether the linear relation was reversible, which is an important requirement for sensor materials.



2011 ◽  
Vol 364 ◽  
pp. 427-433 ◽  
Author(s):  
Mohamad Yatim Norazlina ◽  
Yusof Faridah ◽  
Chantara Thevy Ratnam ◽  
Iis Sopyan

The effect of irradiation on the mechanical properties of Epoxidized Natural Rubber/Ethylene Vinyl Acetate/Carbon Nanotubes (ENR/EVA/CNTs) nanocomposites were investigated. CNTs at various amount (2, 3, 4 and 6 wt%) were incorporated into ENR50 by solvent casting method. The ENR/CNTs were then blended with EVA by mixing in a Brabender Plasticoder at 120°C. Next, the samples were irradiated by using electron beam with 3 MeV electron beam machine in a dose range of 50 to 200 kGy. The mechanical properties such as tensile strength (Ts), modulus at 100% elongation (M100), elongation at break (Eb) and hardness of reinforced ENR/EVA/CNTs nanocomposites were studied as a function of radiation dose. It was found that, the Ts and M100 has increased almost 2 times compared to the nanocomposites without irradiation up to 150 kGy dose of radiation, and a downward trend thereafter. Gel fraction further confirmed the powerful energy of electron beam radiation result in irradiation-induced crosslinking and further enhanced mechanical properties of the nanocomposites.



Sign in / Sign up

Export Citation Format

Share Document