Experimental validation of the modified couple stress Timoshenko beam theory for web-core sandwich panels

2014 ◽  
Vol 111 ◽  
pp. 130-137 ◽  
Author(s):  
Jani Romanoff ◽  
J.N. Reddy
Vibration ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 201-221 ◽  
Author(s):  
Mergen H. Ghayesh ◽  
Ali Farajpour ◽  
Hamed Farokhi

A nonlinear vibration analysis is conducted on the mechanical behavior of axially functionally graded (AFG) microscale Timoshenko nonuniform beams. Asymmetry is due to both the nonuniform material mixture and geometric nonuniformity. Using the Timoshenko beam theory, the continuous models for translation/rotation are developed via an energy balance. Size-dependence is incorporated via the modified couple stress theory and the rotation via the Timoshenko beam theory. Galerkin’s method of discretization is applied and numerical simulations are conducted for a size-dependent vibration of the AFG microscale beam. Effects of material gradient index and axial change in the cross-sectional area on the force and frequency diagrams are investigated.


AIAA Journal ◽  
2004 ◽  
Vol 42 (4) ◽  
pp. 833-839 ◽  
Author(s):  
Jen-Fang Yu ◽  
Hsin-Chung Lien ◽  
B. P. Wang

2017 ◽  
Vol 24 (2) ◽  
pp. 855-867 ◽  
Author(s):  
Feng Liu ◽  
Shiqiao Gao ◽  
Shaohua Niu ◽  
Yan Zhang ◽  
Yanwei Guan ◽  
...  

2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Dianlong Yu ◽  
Jihong Wen ◽  
Honggang Zhao ◽  
Yaozong Liu ◽  
Xisen Wen

The flexural vibration band gap in a periodic fluid-conveying pipe system is studied based on the Timoshenko beam theory. The band structure of the flexural wave is calculated with a transfer matrix method to investigate the gap frequency range. The effects of the rotary inertia and shear deformation on the gap frequency range are considered. The frequency response of finite periodic pipe is calculated with a finite element method to validate the gap frequency ranges.


Sign in / Sign up

Export Citation Format

Share Document