Vibration-based spatial damage identification in honeycomb-core sandwich composite structures using wavelet analysis

2014 ◽  
Vol 118 ◽  
pp. 385-391 ◽  
Author(s):  
Andrzej Katunin
Author(s):  
O Bareille ◽  
M N Ichchou

Dynamic behaviour of honeycomb-core composite structures forms the framework of this article. The wave numbers of propagative waves are the elements of comparison between a numerical method (wave finite-element method) and an experimental identification technique (inhomogeneous wave correlation). The numerical method is based on the description of the dynamics of periodic waveguides. The experimental technique uses a matching criterion with the measured displacement field to obtain the corresponding wave numbers for a wave-based description of the displacement. Both approaches are applied to a sandwich composite beam with a honeycomb core. They seem to be in quite good accordance with analytical results for the flexural wave number.


2019 ◽  
Vol 283 ◽  
pp. 09004
Author(s):  
Khawla Essassi ◽  
Jean-Luc Rebiere ◽  
Abderrahim El Mahi ◽  
Mahamane Toure ◽  
Mohamed amine Ben Souf ◽  
...  

This paper describes the flexural vibration and damping performances of an eco-composite sandwich structure with re-entrant honeycomb core. The main objective of this study is to analyse the effect of flax fibre reinforcement composite and the densities of the auxetic core on the dynamic properties of the sandwich structures. The damping properties and the sandwich stiffness are determined in bending beams for different free lengths in a clamped-free configuration. Firstly, the dynamic properties of the skins were investigated in order to develop the evolution of mechanical properties as well as damping coefficient for each material. Then, the same characterization was tested on the sandwich structures with different core densities. The results obtained showed that both core densities and flax fibre as reinforcement plays a major role on the dynamic properties of the sandwich composite structures.


Author(s):  
Joanna Grabowska ◽  
Magdalena Palacz ◽  
Marek Krawczuk ◽  
Wiesław Ostachowicz ◽  
Irina Trendafilova ◽  
...  

2021 ◽  
pp. 147592172110339
Author(s):  
Guoqiang Liu ◽  
Binwen Wang ◽  
Li Wang ◽  
Yu Yang ◽  
Xiaguang Wang

Due to no requirement for direct interpretation of the guided wave signal, probability-based diagnostic imaging (PDI) algorithm is especially suitable for damage identification of complex composite structures. However, the weight distribution function of PDI algorithm is relatively inaccurate. It can reduce the damage localization accuracy. In order to improve the damage localization accuracy, an improved PDI algorithm is proposed. In the proposed algorithm, the weight distribution function is corrected by the acquired relative distances from defects to all actuator–sensor pairs and the reduction of the weight distribution areas. The validity of the proposed algorithm is assessed by identifying damages at different locations on a stiffened composite panel. The results show that the proposed algorithm can identify damage of a stiffened composite panel accurately.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2005
Author(s):  
Veronika Scholz ◽  
Peter Winkler ◽  
Andreas Hornig ◽  
Maik Gude ◽  
Angelos Filippatos

Damage identification of composite structures is a major ongoing challenge for a secure operational life-cycle due to the complex, gradual damage behaviour of composite materials. Especially for composite rotors in aero-engines and wind-turbines, a cost-intensive maintenance service has to be performed in order to avoid critical failure. A major advantage of composite structures is that they are able to safely operate after damage initiation and under ongoing damage propagation. Therefore, a robust, efficient diagnostic damage identification method would allow monitoring the damage process with intervention occurring only when necessary. This study investigates the structural vibration response of composite rotors by applying machine learning methods and the ability to identify, localise and quantify the present damage. To this end, multiple fully connected neural networks and convolutional neural networks were trained on vibration response spectra from damaged composite rotors with barely visible damage, mostly matrix cracks and local delaminations using dimensionality reduction and data augmentation. A databank containing 720 simulated test cases with different damage states is used as a basis for the generation of multiple data sets. The trained models are tested using k-fold cross validation and they are evaluated based on the sensitivity, specificity and accuracy. Convolutional neural networks perform slightly better providing a performance accuracy of up to 99.3% for the damage localisation and quantification.


2017 ◽  
Vol 188 ◽  
pp. 241-247 ◽  
Author(s):  
Wiesław M. Ostachowicz ◽  
Tomasz Wandowski ◽  
Paweł H. Malinowski ◽  
Paweł Kudela

2021 ◽  
Author(s):  
PAVANA PRABHAKAR ◽  
VINAY DAMODARAN, ◽  
ABARINATHAN PUSHPARAJ SUBRAMANIYAN

The long-term goal of this ONR funded project is to facilitate the design of architected composites that play a key role in damage tolerant and resilient structures. The main emphasis is on developing new composite structures with improved performance and durability as compared to conventional structural composites. To that end, we will present our work in detail on the following within the realm of sandwich composites along with a novel Machine Learning framework for stress prediction in composites: 1) Novel recoverable sandwich composite structures: Traditional sandwich cores such as foam core or honeycomb structures are good options for enabling lightweight and stiff structures. Although, these cores are known to dissipate energy under extreme conditions such as impact loading, they experience permanent damage. Here, our goal is to design core structures that undergo substantial deformation without accumulating damage and recover their original geometric configuration after the loading is removed. In contrast to a traditional foam or honeycomb structure, we have developed a multi-layer architected core design that facilitates significant deformation beyond the initial peak load, yielding a larger energy dissipation during impact and other extreme loading scenarios. We utilize the concept of pseudo-bistability of truncated cone unit cells to achieve elastic buckling for energy dissipation and shape recovery of core structures. 2) Tailoring of sandwich composite facings: Our objective is to establish the influence of fiber architecture on moisture diffusion pathways in FRPC facings for enabling damage tolerant facing designs. To that end, we have evaluated the moisture kinetics in FRPCs by developing micromechanics based computational models within FEM. We have explained the effect of tortuous diffusion pathways that manifest within FRPCs due to internal fiber architectures. Finally, we established the relationship between tortuosity and diffusivity that can be used for studying moisture diffusion in other FRPCs.


Author(s):  
A. Sarhadi ◽  
M. Tahani ◽  
F. Kolahan ◽  
M. Sarhadi

Multi-objective optimal design of sandwich composite laminates consisting of high stiffness and expensive surface layers and low-stiffness and inexpensive core layer is addressed in this paper. The object is to determine ply angles and number of surface layers and core thickness in such way that natural frequency is maximized with minimal material cost and weight. A simulated annealing algorithm with finite element method is used for simultaneous cost and weight minimization and frequency maximization. The proposed procedure is applied to Graphite-Epoxy/Glass-Epoxy and Graphite-epoxy/Aluminum sandwich laminates and results are obtained for various boundary conditions and aspect ratios. Results show that this technique is useful in designing of effective, competitive and light composite structures.


Sign in / Sign up

Export Citation Format

Share Document