Wave propagation in composite structures

Author(s):  
O Bareille ◽  
M N Ichchou

Dynamic behaviour of honeycomb-core composite structures forms the framework of this article. The wave numbers of propagative waves are the elements of comparison between a numerical method (wave finite-element method) and an experimental identification technique (inhomogeneous wave correlation). The numerical method is based on the description of the dynamics of periodic waveguides. The experimental technique uses a matching criterion with the measured displacement field to obtain the corresponding wave numbers for a wave-based description of the displacement. Both approaches are applied to a sandwich composite beam with a honeycomb core. They seem to be in quite good accordance with analytical results for the flexural wave number.

2019 ◽  
Vol 283 ◽  
pp. 09004
Author(s):  
Khawla Essassi ◽  
Jean-Luc Rebiere ◽  
Abderrahim El Mahi ◽  
Mahamane Toure ◽  
Mohamed amine Ben Souf ◽  
...  

This paper describes the flexural vibration and damping performances of an eco-composite sandwich structure with re-entrant honeycomb core. The main objective of this study is to analyse the effect of flax fibre reinforcement composite and the densities of the auxetic core on the dynamic properties of the sandwich structures. The damping properties and the sandwich stiffness are determined in bending beams for different free lengths in a clamped-free configuration. Firstly, the dynamic properties of the skins were investigated in order to develop the evolution of mechanical properties as well as damping coefficient for each material. Then, the same characterization was tested on the sandwich structures with different core densities. The results obtained showed that both core densities and flax fibre as reinforcement plays a major role on the dynamic properties of the sandwich composite structures.


1983 ◽  
Vol 48 (2) ◽  
pp. 586-595 ◽  
Author(s):  
Alexander Perjéssy ◽  
Pavol Hrnčiar ◽  
Ján Šraga

The wave numbers of the fundamental C=O and C=C stretching vibrations, as well as that of the first overtone of C=O stretching vibration of 2-(3-, and 4-substituted phenylmethylene)-1,3-cycloheptanediones and 1,3-cycloheptanedione were measured in tetrachloromethane and chloroform. The spectral data were correlated with σ+ constants of substituents attached to phenyl group and with wave number shifts of the C=O stretching vibration of substituted acetophenones. The slope of the linear dependence ν vs ν+ of the C=C stretching vibration of the ethylenic group was found to be more than two times higher than that of the analogous correlation of the C=O stretching vibration. Positive values of anharmonicity for asymmetric C=O stretching vibration can be considered as an evidence of the vibrational coupling in a cyclic 1,3-dicarbonyl system similarly, as with derivatives of 1,3-indanedione. The relationship between the wave numbers of the symmetric and asymmetric C=O stretching vibrations indicates that the effect of structure upon both vibrations is symmetric. The vibrational coupling in 1,3-cycloheptanediones and the application of Seth-Paul-Van-Duyse equation is discussed in relation to analogous results obtained for other cyclic 1,3-dicarbonyl compounds.


2021 ◽  
pp. 002199832110507
Author(s):  
Narin S. Fatima ◽  
Robert E. Rowlands

Although the mechanical integrity of a member can be highly influenced by associated stresses, determining the latter can be very challenging for finite orthotropic composites containing cutouts. This is particularly so if the external loading is not well known, a common situation in practical situations. Acknowledging the above, a finite elliptically-perforated orthotropic tensile laminate is stress analyzed by combining measured displacement data with relevant analytical and numerical tools. Knowledge of the external loading is unnecessary. Results are verified independently and the concepts are applicable to other situations. The developed technology can provide important design-type information for orthotropic composites. In particular, the ability to apply analyses for perforated composite structures which assume infinite geometry to finite geometries is demonstrated.


2021 ◽  
Author(s):  
PAVANA PRABHAKAR ◽  
VINAY DAMODARAN, ◽  
ABARINATHAN PUSHPARAJ SUBRAMANIYAN

The long-term goal of this ONR funded project is to facilitate the design of architected composites that play a key role in damage tolerant and resilient structures. The main emphasis is on developing new composite structures with improved performance and durability as compared to conventional structural composites. To that end, we will present our work in detail on the following within the realm of sandwich composites along with a novel Machine Learning framework for stress prediction in composites: 1) Novel recoverable sandwich composite structures: Traditional sandwich cores such as foam core or honeycomb structures are good options for enabling lightweight and stiff structures. Although, these cores are known to dissipate energy under extreme conditions such as impact loading, they experience permanent damage. Here, our goal is to design core structures that undergo substantial deformation without accumulating damage and recover their original geometric configuration after the loading is removed. In contrast to a traditional foam or honeycomb structure, we have developed a multi-layer architected core design that facilitates significant deformation beyond the initial peak load, yielding a larger energy dissipation during impact and other extreme loading scenarios. We utilize the concept of pseudo-bistability of truncated cone unit cells to achieve elastic buckling for energy dissipation and shape recovery of core structures. 2) Tailoring of sandwich composite facings: Our objective is to establish the influence of fiber architecture on moisture diffusion pathways in FRPC facings for enabling damage tolerant facing designs. To that end, we have evaluated the moisture kinetics in FRPCs by developing micromechanics based computational models within FEM. We have explained the effect of tortuous diffusion pathways that manifest within FRPCs due to internal fiber architectures. Finally, we established the relationship between tortuosity and diffusivity that can be used for studying moisture diffusion in other FRPCs.


Author(s):  
A. Sarhadi ◽  
M. Tahani ◽  
F. Kolahan ◽  
M. Sarhadi

Multi-objective optimal design of sandwich composite laminates consisting of high stiffness and expensive surface layers and low-stiffness and inexpensive core layer is addressed in this paper. The object is to determine ply angles and number of surface layers and core thickness in such way that natural frequency is maximized with minimal material cost and weight. A simulated annealing algorithm with finite element method is used for simultaneous cost and weight minimization and frequency maximization. The proposed procedure is applied to Graphite-Epoxy/Glass-Epoxy and Graphite-epoxy/Aluminum sandwich laminates and results are obtained for various boundary conditions and aspect ratios. Results show that this technique is useful in designing of effective, competitive and light composite structures.


Sign in / Sign up

Export Citation Format

Share Document