Numerical prediction of effective electro-elastic properties of three-dimensional braided piezoelectric ceramic composites

2017 ◽  
Vol 180 ◽  
pp. 420-428 ◽  
Author(s):  
Xiao Ma ◽  
Gaofeng Wei
Author(s):  
Amy M. McGough ◽  
Robert Josephs

The remarkable deformability of the erythrocyte derives in large part from the elastic properties of spectrin, the major component of the membrane skeleton. It is generally accepted that spectrin's elasticity arises from marked conformational changes which include variations in its overall length (1). In this work the structure of spectrin in partially expanded membrane skeletons was studied by electron microscopy to determine the molecular basis for spectrin's elastic properties. Spectrin molecules were analysed with respect to three features: length, conformation, and quaternary structure. The results of these studies lead to a model of how spectrin mediates the elastic deformation of the erythrocyte.Membrane skeletons were isolated from erythrocyte membrane ghosts, negatively stained, and examined by transmission electron microscopy (2). Particle lengths and end-to-end distances were measured from enlarged prints using the computer program MACMEASURE. Spectrin conformation (straightness) was assessed by calculating the particles’ correlation length by iterative approximation (3). Digitised spectrin images were correlation averaged or Fourier filtered to improve their signal-to-noise ratios. Three-dimensional reconstructions were performed using a suite of programs which were based on the filtered back-projection algorithm and executed on a cluster of Microvax 3200 workstations (4).


1995 ◽  
Author(s):  
Shoko Yoshikawa ◽  
R. Meyer ◽  
J. Witham ◽  
S. Y. Agadda ◽  
G. Lesieutre

1991 ◽  
Author(s):  
T. FUJIMORI ◽  
M. KAWAI ◽  
H. IKEDA ◽  
Y. ANDO ◽  
Y. OHMORI

2006 ◽  
Vol 22 (4) ◽  
pp. 331-338
Author(s):  
M. Chang ◽  
Y.-H. Hu ◽  
S.-W. Chau ◽  
K.-H. Lin

AbstractThe mixing behavior of a two-channel micromixer with a circular mixing chamber at four different chamber depths and six different flow rates had been investigated. Experiments were implemented with the mixings of two fluids. An image inspection method using the variance of the image gray level contrast as the measurement parameter to determine the mixing efficiency distribution in these mixers. The steady, three-dimensional and laminar flow fields inside the micromixers were also simulated numerically with a finite volume discretization. Through the numerical integration over the chamber depth, the three-dimensional numerical prediction could be compressed into a two-dimensional result, which could be directly used to compare with the experimental measurements. Experimental results show that the measured mixing efficiency is raised with the increase of chamber depth. The numerical prediction of mixing efficiency agreed qualitatively with those obtained from the experimental measurements, while the ratio of the depth to diameter of the mixing chamber is big enough to eliminate the viscosity effect.


Sign in / Sign up

Export Citation Format

Share Document