Investigation of shear strength correlations and reliability assessments of sandwich structures by kriging method

2020 ◽  
Vol 253 ◽  
pp. 112782
Author(s):  
Ala Ameryan ◽  
Mansour Ghalehnovi ◽  
Mohsen Rashki
2019 ◽  
Vol 13 (3) ◽  
pp. 393-399
Author(s):  
Atje Setiawan, Nur, Annisa Nur, Budi Nurani Abdullah, Hamid, Falah, Ruchjana

2013 ◽  
Vol 773 ◽  
pp. 549-554
Author(s):  
Shi Dong Pan ◽  
Zhen Gong Zhou ◽  
Lin Zhi Wu

In this paper, in order to enhance the equivalent shear strength of the corrugated ribbon sandwich structures, one new optimal design concept is brought forward to design the corrugated ribbon sandwich structures subjected to biaxial shear loads. Based on the performance harmony concept, the equivalent shear properties have been investigated and given. Analytical results show that the equivalent shear properties of the corrugated ribbon sandwich structure depend on not only the lattice truss cores, but also the facesheets, the interface and the shear loads imposed on the facesheets.


2021 ◽  

This paper firstly developed a three-dimensional (3D) finite element model (FEM) for enhanced C-channels (ECs) in steel-UHPC-steel sandwich structures (SUSSSs). The FEM was validated by 12 push-out tests on ECs with UHPC. With the validated FEM, this paper performed in-depth parametric studies on shear behaviours of ECs with ultra-high performance concrete (UHPC). These investigated parameters included bolt-hole gap (a), grade (M) and diameter (d) of bolt, core strength (fc), length of C-channel (Lc), and prestressing force ratio on bolt (ρ) in ECs. Under shear forces, the ECs in UHPC exhibited successive fractures of bolts and C-channels. Increasing the bolt-hole gap within 0-2 mm has no harm on the ultimate shear resistance, but greatly improves the slip capacity of ECs. Increasing grade and diameter of bolts improves the shear resistance and ductility of ECs through increasing the PB/PC (shear strength of bolt to that of C-channel) ratio. Increasing the core strength increased the shear resistance, but reduced the ductility of ECs due to the reduced PB/PC ratio. The ECs with Lc value of 50 mm offer the best ductility. Prestressing force acting on the bolts reduced the shear strength and ductility of ECs with UHPC. Analytical models were proposed to estimate the ultimate shear resistance and shear-slip behaviours of ECs with UHPC. The extensive validations of these models against 12 tests and 31 FEM analysis cases proved their reasonable evaluations on shear behaviours of ECs with UHPC.


1992 ◽  
Vol 05 (03) ◽  
pp. 100-103 ◽  
Author(s):  
G. Jean ◽  
J. K. Roush ◽  
R. M. DeBowes ◽  
E. M. Gaughan ◽  
J. Kirpensteijn

SummaryThe holding power and holding power per mm bone width of 4.5 mm and 5.5 mm cortical and 6.5 mm cancellous orthopaedic screws were obtained by tensile load-to-failure studies in excised metacarpal and metatarsal bones of young female Holstein calves. Holding power and holding power per mm bone width of 6.5 mm orthopaedic screws were significantly greater than those of 4.5 and 5.5 mm orthopaedic screws in the diaphysis and metaphysis. Significant differences were not detected between holding power and holding power per mm bone width of 4.5 and 5.5 mm orthopaedic screws. The holding power was not different between metacarpi and metatarsi. The limiting factor in all tests of holding power was the shear strength of the bone. We found that 6.5 mm orthopaedic screws have the greatest holding power in the metacarpal and metatarsal bones of young calves.This study compares the holding power of 4.5 mm and 5.5 mm cortical and 6.5 mm cancellous orthopaedic screws in excised metacarpal and metatarsal bones from young female Holstein calves. We found that 6.5 mm orthopaedic screws have the greatest holding power.


2020 ◽  
Author(s):  
Iván A. Contreras ◽  
Jed D. Greenwood ◽  
Aaron T. Grosser

2020 ◽  
Vol 9 (4) ◽  
pp. e31942727
Author(s):  
João Gabriel Missia da Silva ◽  
Pedro Nicó de Medeiros ◽  
Denise Ransolin Soranso ◽  
Vinicius Peixoto Tinti ◽  
José Tarcísio da Silva Oliveira ◽  
...  

The aim of this study was to evaluate the influence of anatomical characteristics on the adhesion performance of Vatairea sp., Paulownia sp., Aspidosperma populifolium and Tectona grandis wood. Specimens for anatomical, physical and mechanical analyzes were produced from tangentially oriented boards. The treatments were joint glued from pieces of the same anatomical orientation (radial and tangential), evaluated for shear strength and glue line failure. The Vatairea sp wood had the highest specific gravity (0.74 g cm-3) and the Paulownia sp (0.34 g cm-3) wood was smaller. Aspidosperma populifolium species showed the highest shear strength in the glue line in the tangential and radial faces. The anatomical variables with higher influence on the wood adhesion process were pith ray cells and especially fibers that exhibit the greatest correlation with the shear strength of the glue line.


Sign in / Sign up

Export Citation Format

Share Document