Seismic performance of rectangular ultra-high performance concrete filled steel tube (UHPCFST) columns

2020 ◽  
pp. 113242
Author(s):  
Heng Cai ◽  
Lihua Xu ◽  
Yin Chi ◽  
Yanxiang Yan ◽  
Chunlei Yu ◽  
...  
2020 ◽  
Vol 114 ◽  
pp. 103813
Author(s):  
Peiliang Shen ◽  
Jian-Xin Lu ◽  
Haibing Zheng ◽  
Linnu Lu ◽  
Fazhou Wang ◽  
...  

2019 ◽  
Vol 23 (5) ◽  
pp. 969-978
Author(s):  
Jian-gang Wei ◽  
Jun Zhou ◽  
Jiang-nan Huang ◽  
Hui-hui Yuan ◽  
Qing-wei Huang

This article experimentally investigates the cyclic behavior of ultra high performance concrete–filled steel tube beam-columns. A total of eight specimens were tested. The considered parameters were the axial load ratio and steel ratio. The results showed that all ultra high performance concrete–filled steel tube beam-columns had a very good cyclic behavior without significant pinching. Increasing the axial load ratio results in the decrease of strength and ductility, but it has no obvious influence on the initial flexural stiffness. Reducing the steel ratio results in the decrease of the strength, stiffness and ductility, and energy dissipation capacity.


2021 ◽  
Author(s):  
Youssef Hilal

Previous researchers studied the behavior of Ultra-High Performance Concrete (UHPC) columns confined with steel tubes. However, predicting the influence of the confinement effect and the compressive capacity of these columns has yet to be further examined. Currently, the Canadian design code limits for reinforced concrete do not reach the strength nor the strain produced by using UHPC. This project uses the Canadian design methods for a cross-section of UHPC to form a column interaction curve and compared it with six test specimens. The effects of steel tube confinement will also be examined. Additionally, the Eurocode 4 (EC4) method, which includes the strengths of UHPC and confinement of steel tube, was used to formulate another column interaction curve. The results show that the Canadian code severely underestimates the design strength of confined UHPC while the EC4 provides much more accurate results.


2020 ◽  
pp. 136943322098052
Author(s):  
Gang Liu ◽  
Bo Shan ◽  
Dade Lai ◽  
Fucai Liu ◽  
Yan Xiao

Seawater and sea sand concrete (SWSSC) filled ultra-high performance concrete (UHPC) tube (SFUHPC tube) column is a cement-based tubular composite column, which combines the excellent compressive strength and toughness of UHPC and lateral confining action from fiber reinforced polymer (FRP) hoops. The novel composite system has the potential to be used in marine engineering. The aims of this paper focus on evaluating the seismic performance of SFUHPC tube columns for being designed in costal and marine engineering. A series of low-cycle reversed lateral loading tests were conducted on five relatively large-scale specimens. FRP hoop volumetric ratio, compressive strength of filling SWSSC, and the types of FRP bar were selected as test parameters in this investigation. The failure modes, hysteretic responses and effects of main parameters were studied and discussed. SFUHPC tube columns exhibited flexural failure mode without visible spalling of the UHPC cover. It is noteworthy that the limit plastic drift ratios of all SFUHPC tube columns exceed the specified limits (0.02) in accordance to the rare earthquake requirement in seismic design code. The current study reveals that the proposed composite columns have acceptable ductility and relatively reliable lateral resistant performance for being used in the marine engineering. From the point of view of seismic performance, filling high strength SWSSC in UHPC tube is acceptable for the proposed composite system.


2021 ◽  
Vol 264 ◽  
pp. 113713
Author(s):  
Qiuru Lu ◽  
Lihua Xu ◽  
Yin Chi ◽  
Fangqian Deng ◽  
Min Yu ◽  
...  

Author(s):  
Karthik N Ganiga ◽  
Ibrahim Mahzeen ◽  
Mohammed Safan ◽  
Shaikh Fazil M U ◽  
Shilpa S

In recent years, a large number of studies have been carried out to investigate the behaviours of concrete filled double skin steel tube (CFDST) members due to its increasing popularity in the construction industry. This project aims to study on ultra-high performance concrete filled double-skin tubes subjected to blast loading with cross section being square for both inner and outer steel tubes using ANSYS software. It is evident that the proposed CFDST column was able to withstand a large blast load without failure so that it has the potential to be used in high-value buildings as well as critical infrastructures. The steel tubes and concrete work together well and integrity of steel concrete interface is maintained. Steel tubes in inner and outer can acts as permanent formwork and primary reinforcement. ANSYS results shows that the CFDA column can withstand applied blast load.


Sign in / Sign up

Export Citation Format

Share Document