scholarly journals UHPC Infilled Circular steel Tube Column Design

2021 ◽  
Author(s):  
Youssef Hilal

Previous researchers studied the behavior of Ultra-High Performance Concrete (UHPC) columns confined with steel tubes. However, predicting the influence of the confinement effect and the compressive capacity of these columns has yet to be further examined. Currently, the Canadian design code limits for reinforced concrete do not reach the strength nor the strain produced by using UHPC. This project uses the Canadian design methods for a cross-section of UHPC to form a column interaction curve and compared it with six test specimens. The effects of steel tube confinement will also be examined. Additionally, the Eurocode 4 (EC4) method, which includes the strengths of UHPC and confinement of steel tube, was used to formulate another column interaction curve. The results show that the Canadian code severely underestimates the design strength of confined UHPC while the EC4 provides much more accurate results.

2021 ◽  
Author(s):  
Youssef Hilal

Previous researchers studied the behavior of Ultra-High Performance Concrete (UHPC) columns confined with steel tubes. However, predicting the influence of the confinement effect and the compressive capacity of these columns has yet to be further examined. Currently, the Canadian design code limits for reinforced concrete do not reach the strength nor the strain produced by using UHPC. This project uses the Canadian design methods for a cross-section of UHPC to form a column interaction curve and compared it with six test specimens. The effects of steel tube confinement will also be examined. Additionally, the Eurocode 4 (EC4) method, which includes the strengths of UHPC and confinement of steel tube, was used to formulate another column interaction curve. The results show that the Canadian code severely underestimates the design strength of confined UHPC while the EC4 provides much more accurate results.


Author(s):  
Karthik N Ganiga ◽  
Ibrahim Mahzeen ◽  
Mohammed Safan ◽  
Shaikh Fazil M U ◽  
Shilpa S

In recent years, a large number of studies have been carried out to investigate the behaviours of concrete filled double skin steel tube (CFDST) members due to its increasing popularity in the construction industry. This project aims to study on ultra-high performance concrete filled double-skin tubes subjected to blast loading with cross section being square for both inner and outer steel tubes using ANSYS software. It is evident that the proposed CFDST column was able to withstand a large blast load without failure so that it has the potential to be used in high-value buildings as well as critical infrastructures. The steel tubes and concrete work together well and integrity of steel concrete interface is maintained. Steel tubes in inner and outer can acts as permanent formwork and primary reinforcement. ANSYS results shows that the CFDA column can withstand applied blast load.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6354
Author(s):  
Fanghong Wu ◽  
Yanqin Zeng ◽  
Ben Li ◽  
Xuetao Lyu

This paper presents an experimental investigation of flexural behavior of circular ultra-high-performance concrete with coarse aggregate (CA-UHPC)-filled steel tubes (CA-UHPCFSTs). A total of seven flexural members were tested under a four-point bending load. The failure modes, overall deflection curves, moment-versus-curvature relationships, moment-versus-strain curves, strain distribution curves, ductility, flexural stiffness and ultimate flexural capacity were evaluated. The results indicate that the CA-UHPCFSTs under bending behaved in a good ductile manner. The CA-UHPC strength has a limited effect on the ultimate flexural capacity, while the addition of steel fiber can improve the ultimate flexural capacity. Increasing the steel tube thickness leads to higher flexural stiffness and ultimate flexural capacity. There is a significant confinement effect between the steel tube and the CA-UHPC core in the compressive zone and centroidal plane after the specimen enters the elastic-plastic stage, while the confinement effect in the tensile zone is minimal. Moreover, the measured flexural stiffness and ultimate flexural capacity were compared with the predictions using various design specifications. Two empirical formulas for calculating the initial and serviceability-level flexural stiffness of CA-UHPCFSTs are developed. Further research is required to propose the accurate design formula for the ultimate flexural capacity of CA-UHPCFSTs.


2020 ◽  
Vol 114 ◽  
pp. 103813
Author(s):  
Peiliang Shen ◽  
Jian-Xin Lu ◽  
Haibing Zheng ◽  
Linnu Lu ◽  
Fazhou Wang ◽  
...  

2021 ◽  
Vol 71 (2) ◽  
pp. 256-264
Author(s):  
Viet-Chinh Mai ◽  
Xuan-Bach Luu ◽  
Cong-Binh Dao ◽  
Dinh-Viet Le

Most of the structures that are damaged by an explosion are not initially designed to resist this kind of load. In the overall structure of any building, columns play an important role to prevent the collapse of frame structure under blast impact. Hence, the main concept in the blast resistance design of the structure is to improve the blast load capacity of the column. In this study, dynamic analysis and numerical model of Ultra High Performance Concrete (UHPC) column under high explosive load, is presented. Based on the Johnson Holmquist 2 damage model and the subroutine in the ABAQUS platform, a total of twenty UHPC model of the column were calculated. The objective of the article is to investigate the structural response of the UHPC column and locate the most vulnerable scenarios to propose necessary recommendations for the UHPC column in the blast loading resistance design. The input parameters, including the effect of various shapes of cross-section, scaled distance, steel reinforcement ratio, and cross-section area, are analyzed to clarify the dynamic behavior of the UHPC column subjected to blast loading. Details of the numerical data, and the discussion on the important obtained results, are also provided in this paper.


2021 ◽  
Vol 264 ◽  
pp. 113713
Author(s):  
Qiuru Lu ◽  
Lihua Xu ◽  
Yin Chi ◽  
Fangqian Deng ◽  
Min Yu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2979
Author(s):  
Moochul Shin ◽  
Younghoon Bae ◽  
Sukhoon Pyo

This numerical study investigates the structural performance of railway sleepers made of ultra high-performance concrete (UHPC). First, numerical concrete sleepers are developed, and the tensile stress-strain relationship obtained from the direct tension test on the UHPC coupons is used for the tensile constitutive model after applying a fiber orientation reduction factor. The numerical sleeper models are validated with the experimental data in terms of the force and crack-width relationship. Second, using the developed models, a parametric study is performed to investigate the performance of the UHPC sleepers while considering various design/mechanical/geometrical parameters: steel fiber contents, size of the cross-section, and diameter and strength of prestressing (PS) tendons. The simulation results indicate that the size of the cross-section has the most impacts on the performance, while the effect of yielding strengths of PS tendons is minimal among all the parameters. Engineers need to pay attention to efficiency and an economical factor when using a larger cross-section, since sleepers with larger cross-sections can be an over-designed sleeper. This study suggests an economical design factor for engineers to evaluate what combination of parameters would be economical designs.


Sign in / Sign up

Export Citation Format

Share Document