Blast responses of carbon-fiber reinforced polymer tubular columns filled with seawater sea-sand concrete

2021 ◽  
Vol 278 ◽  
pp. 114692
Author(s):  
Dawei Sun ◽  
Ying Xu ◽  
Peng Wang ◽  
Jiannan Zhou ◽  
Fengnian Jin ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 154
Author(s):  
Shaoce Dong ◽  
Chenggao Li ◽  
Guijun Xian

Application of glass- or carbon-fiber-reinforced polymer (GFRP/CFRP) bars makes the direct use of seawater and sea sand concrete (SWSSC) in construction feasible, which is of high interest in order to conserve the limited resources of fresh water and river sand. The present paper performed the life cycle assessment (LCA) of constructing three kinds of beams (GFRP/CFRP bar-reinforced SWSSC beams, and steel bar-reinforced common concrete (SRC) beam) in marine environments to show the environmental benefits of using FRP bar-reinforced SWSSC beams in marine environments. According to ISO 14040 and ISO 14044, stages including production, transportation, construction, use and end-of-life are within the LCA’s boundary. The ReCiPe method and eight main environmental impact categories were used to characterize the environmental impacts of those beams. LCA results indicate that one cubic meter SWSSC possesses much lower environmental impacts in terms of all eight categories compared with common concrete with the same volume when used in marine environments, with reduction rates from 26.3% to 48.6%. When the two transportation distances were set as 50 and 20 km and without considering the difference in service life, compared to SRC beam, GFRP-SWSSC beam performs better in six categories and CFRP-SWSSC beam performs better in four categories. When considering increased transportation distance and the higher durability performance, the advantageous categories for GFRP-SWSSC and CFRP-SWSSC beams increase to seven and six, respectively. The environmental impacts of all the three beams are mainly affected by the production stages.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Author(s):  
E. A. Nikolaeva ◽  
A. N. Timofeev ◽  
K. V. Mikhaylovskiy

This article describes the results of the development of a high thermal conductivity carbon fiber reinforced polymer based on carbon fiber from pitch and an ENPB matrix modified with a carbon powder of high thermal conductivity. Data of the technological scheme of production and the results of determining the physicomechanical and thermophysical characteristics of carbon fiber reinforced polymer are presented. 


Sign in / Sign up

Export Citation Format

Share Document