Probabilistic Ultrasound C-scan Imaging of Barely Visible Impact Damage in CFRP laminates

2022 ◽  
pp. 115209
Author(s):  
Jeroen Vandendriessche ◽  
Adil Han Orta ◽  
Erik Verboven ◽  
Wim Van Paepegem ◽  
Koen Van Den Abeele ◽  
...  
Keyword(s):  
2006 ◽  
Vol 326-328 ◽  
pp. 1833-1836 ◽  
Author(s):  
Seung Min Jang ◽  
Tadaharu Adachi ◽  
Akihiko Yamaji

The development characteristics of impact-induced damage in carbon-fiber-reinforcedplastics (CFRP) laminates were experimentally studied using a drop-weight impact tester. Five types of CFRP laminates were used to investigate the effect of stacking sequences and thicknesses. The efficiency of absorbed energy to impact energy was different for CFRP laminates with different stacking sequences or thicknesses. The DA/AE ratio of delamination area (DA) to absorbed energy (AE) was almost the same for CFRP laminates with the same stacking sequence regardless of the thickness. We found that the DA/AE ratio could be used as a parameter to characterize the impact damage resistance in CFRP laminates with different stacking sequences.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fang Chen ◽  
Weixing Yao ◽  
Wen Jiang

Purpose The purpose of this paper is to synthetically investigate the impact damage responses of carbon fiber reinforced polymer (CFRP) and its influence on the compression mechanical responses of CFRP laminates, including damage distribution, residual compressive strength and fracture morphology. Design/methodology/approach A progressive damage simulation model is developed to analyze the complicated damage responses of CFRP laminates that are manufactured by resin transfer method (RTM) technology. Based on the ABAQUS/explicit finite element analysis solver, a VUMAT code is proposed to descript the composite materials’ damage behaviors under both impact and compression load. Adopting this proposed model, the primary mechanical indicators of four groups’ 5284RTM/U3160 CFRP laminates with different stacking sequences are predicted. Moreover, impact and compression after impact tests are conducted to verify the accuracy of simulation results. Findings Both simulation and experimental results show that the impact damage with low visible detectability can significantly reduce composites’ compressive strength. For all four groups’ composite laminates, the residual strength ratio is around 35% or even lower. The kernel impact damage near the plates’ geometric center promotes the degradation process of local materials and finally leads to the early occurrence of mechanical fracture. In addition, the impact damage projection area is not sensitive to the parameters of stacking sequences, while the residual compression strength is proportional to the number of 0-degree layers within whole laminates. Originality/value This study helps to understand the effect of an impact event on CFRP laminates’ compressive bearing capacity and provides a numerical method in simulating the damage responses under both impact and compression load.


1997 ◽  
Vol 63 (607) ◽  
pp. 603-609 ◽  
Author(s):  
Masayoshi SHIMIZU ◽  
Tadaharu ADACHI ◽  
Masahiro ARAI ◽  
Hiroyuki MATSUMOTO

2005 ◽  
Vol 297-300 ◽  
pp. 1339-1343 ◽  
Author(s):  
Gui Ping Zhao ◽  
Chong Du Cho ◽  
Oh Yang Kwon

In this paper, the energy absorption characteristics on extruded aluminum box-section strengthened with carbon-fiber-reinforced plastics (CFRP) laminates and/or foam material were investigated under impact loading. Impact tests using a pneumatic impact tester were conducted with the specimens in three-point bending flexure with consideration given to the side-door impact beams in vehicles. The absorbed energy to the specimen during the impact was determined from the loaddisplacement curve, which was obtained from the strain gauge attached to the impactor and the laser displacement transducer. From the results, it was found that the strengthening by externally bonding with CFRP laminates improved the impact-induced energy absorption. Also, the effect of the improvement was clearly seen in the case of the use of filling form material in the aluminum extrusion together with attaching CFRP laminates.


2012 ◽  
Vol 2012 (0) ◽  
pp. _J044032-1-_J044032-5
Author(s):  
Yoshiro SUZUKI ◽  
Akira TODOROKI ◽  
Yoshihiro MIZUTANI

2005 ◽  
Vol 2005.40 (0) ◽  
pp. 82-83
Author(s):  
Mitsuru OIKAWA ◽  
Ning HU ◽  
Hisao FUKUNAGA

2012 ◽  
Vol 225 ◽  
pp. 189-194
Author(s):  
Mohamed Thariq Hameed Sultan ◽  
Azmin Shakrine M. Rafie ◽  
Noorfaizal Yidris ◽  
Faizal Mustapha ◽  
Dayang Laila Majid

Signal processing is an important element used for identifying damage in any SHM-related application. The method here is used to extract features from the use of different types of sensors, of which there are many. The responses from the sensors are also interpreted to classify the location and severity of the damage. This paper describes the signal processing approaches used for detecting the impact locations and monitoring the responses of impact damage. Further explanations are also given on the most widely-used software tools for damage detection and identification implemented throughout this research work. A brief introduction to these signal processing tools, together with some previous work related to impact damage detection, are presented and discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document