Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents

2015 ◽  
Vol 32 ◽  
pp. 141-147 ◽  
Author(s):  
Yaniv Ziv ◽  
Kunal K Ghosh
PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112068 ◽  
Author(s):  
Tamara Berdyyeva ◽  
Stephani Otte ◽  
Leah Aluisio ◽  
Yaniv Ziv ◽  
Laurie D. Burns ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christopher W Thomas ◽  
Mathilde CC Guillaumin ◽  
Laura E McKillop ◽  
Peter Achermann ◽  
Vladyslav V Vyazovskiy

Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define ‘Process S’, a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5–4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.


2019 ◽  
Vol 122 (4) ◽  
pp. 1634-1648 ◽  
Author(s):  
Benjamin Fischer ◽  
Andreas Schander ◽  
Andreas K. Kreiter ◽  
Walter Lang ◽  
Detlef Wegener

Recordings of epidural field potentials (EFPs) allow neuronal activity to be acquired over a large region of cortical tissue with minimal invasiveness. Because electrodes are placed on top of the dura and do not enter the neuronal tissue, EFPs offer intriguing options for both clinical and basic science research. On the other hand, EFPs represent the integrated activity of larger neuronal populations and possess a higher trial-by-trial variability and a reduced signal-to-noise ratio due the additional barrier of the dura. It is thus unclear whether and to what extent EFPs have sufficient spatial selectivity to allow for conclusions about the underlying functional cortical architecture, and whether single EFP trials provide enough information on the short timescales relevant for many clinical and basic neuroscience purposes. We used the high spatial resolution of primary visual cortex to address these issues and investigated the extent to which very short EFP traces allow reliable decoding of spatial information. We briefly presented different visual objects at one of nine closely adjacent locations and recorded neuronal activity with a high-density epidural multielectrode array in three macaque monkeys. With the use of receiver operating characteristics (ROC) to identify the most informative data, machine-learning algorithms provided close-to-perfect classification rates for all 27 stimulus conditions. A binary classifier applying a simple max function on ROC-selected data further showed that single trials might be classified with 100% performance even without advanced offline classifiers. Thus, although highly variable, EFPs constitute an extremely valuable source of information and offer new perspectives for minimally invasive recording of large-scale networks. NEW & NOTEWORTHY Epidural field potential (EFP) recordings provide a minimally invasive approach to investigate large-scale neural networks, but little is known about whether they possess the required specificity for basic and clinical neuroscience. By making use of the spatial selectivity of primary visual cortex, we show that single-trial information can be decoded with close-to-perfect performance, even without using advanced classifiers and based on very few data. This labels EFPs as a highly attractive and widely usable signal.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Kohei J. Sekiguchi ◽  
Pavel Shekhtmeyster ◽  
Katharina Merten ◽  
Alexander Arena ◽  
Daniela Cook ◽  
...  

2010 ◽  
Vol 187 (2) ◽  
pp. 229-234 ◽  
Author(s):  
Juliette Ben Arous ◽  
Yoshinori Tanizawa ◽  
Ithai Rabinowitch ◽  
Didier Chatenay ◽  
William R. Schafer

2008 ◽  
Vol 100 (4) ◽  
pp. 2430-2440 ◽  
Author(s):  
Jun Yamamoto ◽  
Matthew A. Wilson

Multiple single-unit recording has become one of the most powerful in vivo electro-physiological techniques for studying neural circuits. The demand has been increasing for small and lightweight chronic recording devices that allow fine adjustments to be made over large numbers of electrodes across multiple brain regions. To achieve this, we developed precision motorized microdrive arrays that use a novel motor multiplexing headstage to dramatically reduce wiring while preserving precision of the microdrive control. Versions of the microdrive array were chronically implanted on both rats (21 microdrives) and mice (7 microdrives), and relatively long-term recordings were taken.


Sign in / Sign up

Export Citation Format

Share Document