scholarly journals Zolpidem Reduces Hippocampal Neuronal Activity in Freely Behaving Mice: A Large Scale Calcium Imaging Study with Miniaturized Fluorescence Microscope

PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112068 ◽  
Author(s):  
Tamara Berdyyeva ◽  
Stephani Otte ◽  
Leah Aluisio ◽  
Yaniv Ziv ◽  
Laurie D. Burns ◽  
...  
2015 ◽  
Vol 113 (8) ◽  
pp. E1074-E1081 ◽  
Author(s):  
Jeffrey P. Nguyen ◽  
Frederick B. Shipley ◽  
Ashley N. Linder ◽  
George S. Plummer ◽  
Mochi Liu ◽  
...  

The ability to acquire large-scale recordings of neuronal activity in awake and unrestrained animals is needed to provide new insights into how populations of neurons generate animal behavior. We present an instrument capable of recording intracellular calcium transients from the majority of neurons in the head of a freely behaving Caenorhabditis elegans with cellular resolution while simultaneously recording the animal’s position, posture, and locomotion. This instrument provides whole-brain imaging with cellular resolution in an unrestrained and behaving animal. We use spinning-disk confocal microscopy to capture 3D volumetric fluorescent images of neurons expressing the calcium indicator GCaMP6s at 6 head-volumes/s. A suite of three cameras monitor neuronal fluorescence and the animal’s position and orientation. Custom software tracks the 3D position of the animal’s head in real time and two feedback loops adjust a motorized stage and objective to keep the animal’s head within the field of view as the animal roams freely. We observe calcium transients from up to 77 neurons for over 4 min and correlate this activity with the animal’s behavior. We characterize noise in the system due to animal motion and show that, across worms, multiple neurons show significant correlations with modes of behavior corresponding to forward, backward, and turning locomotion.


2021 ◽  
Author(s):  
Xingyu Cui ◽  
Wen ying Shi ◽  
Chao Lu

An ultrafast, non-invasive and large-scale visualization method has been developed to evaluate the dispersion of two-dimensional nanosheets in aqueous solution with fluorescence microscope by formation of excimers from improvement of...


2012 ◽  
Vol 206 (1) ◽  
pp. 78-82 ◽  
Author(s):  
Maohua Zheng ◽  
Pengxiu Cao ◽  
Jiong Yang ◽  
X.Z. Shawn Xu ◽  
Zhaoyang Feng

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christopher W Thomas ◽  
Mathilde CC Guillaumin ◽  
Laura E McKillop ◽  
Peter Achermann ◽  
Vladyslav V Vyazovskiy

Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define ‘Process S’, a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5–4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.


2021 ◽  
Author(s):  
Alex A. Legaria ◽  
Julia A. Licholai ◽  
Alexxai V. Kravitz

AbstractFiber photometry recordings are commonly used as a proxy for neuronal activity, based on the assumption that increases in bulk calcium fluorescence reflect increases in spiking of the underlying neural population. However, this assumption has not been adequately tested. Here, using endoscopic calcium imaging in the striatum we report that the bulk fluorescence signal correlates weakly with somatic calcium signals, suggesting that this signal does not reflect spiking activity, but may instead reflect subthreshold changes in neuropil calcium. Consistent with this suggestion, the bulk fluorescence photometry signal correlated strongly with neuropil calcium signals extracted from these same endoscopic recordings. We further confirmed that photometry did not reflect striatal spiking activity with simultaneous in vivo extracellular electrophysiology and fiber photometry recordings in awake behaving mice. We conclude that the fiber photometry signal should not be considered a proxy for spiking activity in neural populations in the striatum.Significance statementFiber photometry is a technique for recording brain activity that has gained popularity in recent years due to it being an efficient and robust way to record the activity of genetically defined populations of neurons. However, it remains unclear what cellular events are reflected in the photometry signal. While it is often assumed that the photometry signal reflects changes in spiking of the underlying cell population, this has not been adequately tested. Here, we processed calcium imaging recordings to extract both somatic and non-somatic components of the imaging field, as well as a photometry signal from the whole field. Surprisingly, we found that the photometry signal correlated much more strongly with the non-somatic than the somatic signals. This suggests that the photometry signal most strongly reflects subthreshold changes in calcium, and not spiking. We confirmed this point with simultaneous fiber photometry and extracellular spiking recordings, again finding that photometry signals relate poorly to spiking in the striatum. Our results may change interpretations of studies that use fiber photometry as an index of spiking output of neural populations.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Michael J Goard ◽  
Gerald N Pho ◽  
Jonathan Woodson ◽  
Mriganka Sur

Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.


2018 ◽  
Vol 84 (1) ◽  
pp. e51 ◽  
Author(s):  
Alexander D. Jacob ◽  
Adam I. Ramsaran ◽  
Andrew J. Mocle ◽  
Lina M. Tran ◽  
Chen Yan ◽  
...  

2019 ◽  
Vol 116 (17) ◽  
pp. 8554-8563 ◽  
Author(s):  
Somayyeh Soltanian-Zadeh ◽  
Kaan Sahingur ◽  
Sarah Blau ◽  
Yiyang Gong ◽  
Sina Farsiu

Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.


Sign in / Sign up

Export Citation Format

Share Document