Size-independent fracture energy in plain concrete beams using tri-linear model

2011 ◽  
Vol 25 (7) ◽  
pp. 3051-3058 ◽  
Author(s):  
S. Muralidhara ◽  
B.K. Raghu Prasad ◽  
B.L. Karihaloo ◽  
R.K. Singh
2021 ◽  
Vol 15 (1) ◽  
pp. 339-346
Author(s):  
Winfred Mutungi ◽  
Raphael N. Mutuku ◽  
Timothy Nyomboi

Background: Creep in concrete is a long-term deformation under sustained loading. It is influenced by many factors, including constituent materials, environmental conditions, among others. Whenever there is an alteration in the convectional concrete preparation process, the creep characteristics need to be realistically assessed. In the present construction, rice husk ash has been used for partial replacement of cement in concrete production. This is because its properties of both tensile and compressive strength in concrete have been tested and found comparable with plain concrete. However, durability characteristics such as creep, which take place in the long run, have not been realistically assessed. Therefore, it is important to study the creep of rice husk ash concrete, which will further help in the development of a creep prediction model for such concrete for use by design engineers. Objectives: Rice husk ash was used as supplementary cementitious material in concrete, and the creep behavior was studied with the aim of producing a creep prediction model for this concrete. Methods: The cement was replaced with 10% of rice husk ash in concrete with a design strength of 30MPA. Reinforced concrete beams were cast and loaded for flexural creep 35 days after casting. The loading level was 25% of the beam’s strength at the time of loading. The creep observation was done for 60 days. The rice husk used was obtained locally from Mwea irrigation scheme in Kenya. The experiments were carried out in our school laboratory at Jomo Kenyatta university of Agriculture and Technology. Results: The creep strain data of rice husk ash concrete beams was obtained with the highest value of 620 micro strain for 60 days. The results were used to develop a creep prediction model for this concrete. Conclusion: A creep prediction model for rice husk ash concrete has been developed, which can be adopted by engineers for class 30 of concrete containing rice husk ash at a 10% replacement level.


2021 ◽  
pp. 105678952110392
Author(s):  
De-Cheng Feng ◽  
Xiaodan Ren

This paper presents a comprehensive analysis of the mesh-dependency issue for both plain concrete and reinforced concrete (RC) members under uniaxial loading. The detailed mechanisms for each case are firstly derived, and the analytical and numerical strain energies for concrete in different cases are compared to explain the phenomena of mesh-dependency. It is found that the mesh-dependency will be relieved or even eliminated with the increasing of the reinforcing ratio. Meanwhile, a concept of the critical reinforcing ratio is proposed to identify the corresponding boundary of mesh-dependency of RC members. In order to verify the above findings, several illustrative examples are performed and discussed. Finally, to overcome the mesh-dependency issue for RC members with lower reinforcing ratios, we propose a unified regularization method that modifies both stress-strain relations of steel and concrete based on the strain energy equivalence. The method is also applied to the illustrative examples for validation, and the numerical results indicate that the developed method can obtain objective results for cases with different meshes and reinforcing ratios.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 407
Author(s):  
Neha P Asrani ◽  
Murali G ◽  
Arthika J ◽  
Karthikeyan. K ◽  
Haridharan. M.K

Fracture energy is the post-crack energy absorption ability of the material that represents the energy absorbed by the structure at the time of failure. Its analysis has gained importance and hence requires a powerfulmethod for its development. A two parameter Weibull distribution proves to be an efficient tool in analysing the scattered experimental test results. In this paper, the specific fracture energy of plain concrete and concrete reinforced with natural fibres of hemp, wheat straw and elephant grass are statistically analysed by two parameter Weibull distribution by using graphical method. For determining Weibull parameters, 21 equations have been used and the best equation is taken for the reliability analysis. A Weibull reliability curve is plotted, which shows the specific fracture energy at each reliability level. This curve enables an engineer to choose the fracture energy of a particular mix based on its reliability requirement and safety limit. Therefore, reliability curves are a pioneer in statistical analysis as they eliminate the time-consuming and costly experimental process. This method can be applied in areas with similar uncertainties.  


2011 ◽  
Vol 22 (17) ◽  
pp. 1949-1957 ◽  
Author(s):  
Eunsoo Choi ◽  
Baik-Soon Cho ◽  
Joonam Park ◽  
Kyoungsoo Park

This study suggests the utilization of heat of hydration of concrete to activate the shape memory effect (SME) of shape memory alloy (SMA) wires embedded in concrete and produce recovery and residual stress on the wires. This method is more convenient than the previous electronic resistance heating. For the purpose, this study prepares NiTiNb SMA wires that show appropriate temperature window for the use of heat of hydration. Axial compressive tests of concrete cylinders confined by the NiTiNb SMA wire jackets are used to prove that the utilization of heat of hydration is valid to generate recovery and residual stress in the SMA wires. The confined cylinders show increased peak strengths and much larger failure strains than those of the plain concrete. The general behavior of the SMA wire-confined specimens in this study is similar to that of specimens heated by electronic heating jacket. Also, this study explains two examples for the utilization of heat of hydration for the SME in reinforced concrete beams and columns.


Sign in / Sign up

Export Citation Format

Share Document