Effect of Glass Fiber on Fracture Energy of Plain Concrete

Author(s):  
Samuel Demeke Shiferaw ◽  
Temesgen Wondimu Aure ◽  
Alemayehu Golla Gualu
2017 ◽  
Vol 8 (2) ◽  
pp. 304-320 ◽  
Author(s):  
Mohamed MA Abdel-Kader ◽  
Ahmed Fouda

In this article, the response of 12 plain concrete specimens to an impact of hard projectiles was examined in an experimental study. The tests were planned with an aim to observe the influence of using glass fiber reinforced polymer sheets to strengthen plain concrete panels on the performance of concrete under this type of loading. The main findings show that strengthening plain concrete panels with glass fiber reinforced polymer sheets showed satisfactory performance under the impact load; the glass fiber reinforced polymer sheets can be used for strengthening or upgrading concrete structures to improve their resistance against impact. Also, the location of the glass fiber reinforced polymer sheet affects the front and rear face craters.


2021 ◽  
pp. 105678952110392
Author(s):  
De-Cheng Feng ◽  
Xiaodan Ren

This paper presents a comprehensive analysis of the mesh-dependency issue for both plain concrete and reinforced concrete (RC) members under uniaxial loading. The detailed mechanisms for each case are firstly derived, and the analytical and numerical strain energies for concrete in different cases are compared to explain the phenomena of mesh-dependency. It is found that the mesh-dependency will be relieved or even eliminated with the increasing of the reinforcing ratio. Meanwhile, a concept of the critical reinforcing ratio is proposed to identify the corresponding boundary of mesh-dependency of RC members. In order to verify the above findings, several illustrative examples are performed and discussed. Finally, to overcome the mesh-dependency issue for RC members with lower reinforcing ratios, we propose a unified regularization method that modifies both stress-strain relations of steel and concrete based on the strain energy equivalence. The method is also applied to the illustrative examples for validation, and the numerical results indicate that the developed method can obtain objective results for cases with different meshes and reinforcing ratios.


2012 ◽  
Vol 238 ◽  
pp. 57-60 ◽  
Author(s):  
Shu Ling Gao ◽  
Wei Shao ◽  
Jin Li Qiao ◽  
Ling Wang

ECC (Engineered Cementitious Composites) has ultra-high toughness and can be used in the zone needing the ultra-high tensile strain and very high durability. In order to investigate the toughness of ECC, the normal fracture energy GFis calculated and compared with ordinary concrete. The influence of the matrix (fly ash, silicon fume), the fiber (glass fiber, steel fiber and PVA fiber) and the fiber volume ratio on the GFof ECC are analyzed. The research indicates that silicon fume and glass fiber, steel fiber are all not able to be used in ECC. But flash ash and PVA fiber are very suit for using in ECC, the toughness of ECC increases with the increase of their content.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 407
Author(s):  
Neha P Asrani ◽  
Murali G ◽  
Arthika J ◽  
Karthikeyan. K ◽  
Haridharan. M.K

Fracture energy is the post-crack energy absorption ability of the material that represents the energy absorbed by the structure at the time of failure. Its analysis has gained importance and hence requires a powerfulmethod for its development. A two parameter Weibull distribution proves to be an efficient tool in analysing the scattered experimental test results. In this paper, the specific fracture energy of plain concrete and concrete reinforced with natural fibres of hemp, wheat straw and elephant grass are statistically analysed by two parameter Weibull distribution by using graphical method. For determining Weibull parameters, 21 equations have been used and the best equation is taken for the reliability analysis. A Weibull reliability curve is plotted, which shows the specific fracture energy at each reliability level. This curve enables an engineer to choose the fracture energy of a particular mix based on its reliability requirement and safety limit. Therefore, reliability curves are a pioneer in statistical analysis as they eliminate the time-consuming and costly experimental process. This method can be applied in areas with similar uncertainties.  


2014 ◽  
Vol 915-916 ◽  
pp. 784-787
Author(s):  
Yan Lv

Based on the mechanical properties experiment of the glass fiber reinforced concrete with 0%0.6%0.8% and 1% glass fiber volume fraction, the mechanics property such as tensile strength, compressive strength, flexural strength and flexural elasticity modulus are analyzed and compared with the plain concrete when the kinds of fiber content changes. The research results show that the effect of tensile strength and flexural strength can be improved to some extent, which also can serve as a reference or basis for further improvement and development the theory and application of the glass fiber reinforced concrete.


2011 ◽  
Vol 25 (7) ◽  
pp. 3051-3058 ◽  
Author(s):  
S. Muralidhara ◽  
B.K. Raghu Prasad ◽  
B.L. Karihaloo ◽  
R.K. Singh

Author(s):  
Ana Caroline Da Costa Santos ◽  
Paul Archbold

Fibre-reinforced concrete (FRC) is widely employed in the construction industry, with assorted fibre types being used for different applications. Typically, steel fibres give additional tensile strength to the mixture, while flexible fibres may be used in large sections, such as floor slabs, to control crack width and to improve the handling ability of precast sections. For many reasons, including durability concerns, environmental impact, thermal performance, etc, alternatives to the currently available fibres are being sought. This study examines the potential of using basalt fibres, a mineral and natural material, as reinforcement of concrete sections in comparison to steel fibres and plain concrete mix. Mixes were tested containing 0.5% and 1.0% of basalt fibres measuring 25mm length, 0.5% of the same material with 48mm length and steel fibres measuring 50mm by 0.05%, 0.1%, 0.15% and 0.2% of the concrete volume. For the mechanical performance analysis, the 3-point bending test was led and the fracture energy, Young’s modulus and tensile strength in different moments of the tests were calculated. When compared to the control mixtures and the steel-fibre-reinforced concrete, the mixes containing basalt had a reduction in their elastic modulus, representing a decrease in the concrete brittleness. At the same time, the fracture energy of the mixtures was significantly increased with the basalt fibres in both lengths. Finally, the flexural strength was also higher for the natural fibre reinforced concrete than for the plain concrete and comparable to the results obtained with the addition of steel fibres by 0.15%.


Sign in / Sign up

Export Citation Format

Share Document