Determination of Creep Behavior of Concrete Beams Made with Rice Husk Ash

2021 ◽  
Vol 15 (1) ◽  
pp. 339-346
Author(s):  
Winfred Mutungi ◽  
Raphael N. Mutuku ◽  
Timothy Nyomboi

Background: Creep in concrete is a long-term deformation under sustained loading. It is influenced by many factors, including constituent materials, environmental conditions, among others. Whenever there is an alteration in the convectional concrete preparation process, the creep characteristics need to be realistically assessed. In the present construction, rice husk ash has been used for partial replacement of cement in concrete production. This is because its properties of both tensile and compressive strength in concrete have been tested and found comparable with plain concrete. However, durability characteristics such as creep, which take place in the long run, have not been realistically assessed. Therefore, it is important to study the creep of rice husk ash concrete, which will further help in the development of a creep prediction model for such concrete for use by design engineers. Objectives: Rice husk ash was used as supplementary cementitious material in concrete, and the creep behavior was studied with the aim of producing a creep prediction model for this concrete. Methods: The cement was replaced with 10% of rice husk ash in concrete with a design strength of 30MPA. Reinforced concrete beams were cast and loaded for flexural creep 35 days after casting. The loading level was 25% of the beam’s strength at the time of loading. The creep observation was done for 60 days. The rice husk used was obtained locally from Mwea irrigation scheme in Kenya. The experiments were carried out in our school laboratory at Jomo Kenyatta university of Agriculture and Technology. Results: The creep strain data of rice husk ash concrete beams was obtained with the highest value of 620 micro strain for 60 days. The results were used to develop a creep prediction model for this concrete. Conclusion: A creep prediction model for rice husk ash concrete has been developed, which can be adopted by engineers for class 30 of concrete containing rice husk ash at a 10% replacement level.

Author(s):  
Savita Chaudhary ◽  
Aditya Pratap Singh

The optimized RHA, by controlled burn or grinding, has been used as a pozzolanic material in cement and concrete. Using it provides several advantages, such as improved strength and durability properties, and environmental benefits related to the disposal of waste materials and to reduced carbon dioxide emissions. Up to now, little research has been done to investigate the use of RHA as supplementary material in cement and concrete production .The main objective of this work is to study the suitability of the rice husk ash as a pozzolanic material for cement replacement in concrete. However it is expected that the use of rice husk ash in concrete improve the strength properties of concrete. Also it is an attempt made to develop the concrete using rice husk ash as a source material for partial replacement of cement, which satisfies the


2018 ◽  
Vol 7 (3.35) ◽  
pp. 68
Author(s):  
Tolmatti Vamshi Krishna ◽  
M. Ashwin Kumar ◽  
Kunchala Anjaneyulu

Bagasse ash (BA), the residue obtained after the burning of sugarcane bagasse as a fuel, has pozzolanic properties with potential use as a supplementary binding material (SCM). Use of Bagasse ash (BA) as a mineral admixture needs to be established, especially in India, where sugarcane cultivation is widespread, to reduce land required for its disposal and cement consumption in construction industry. Hence, to encourage commercial use ofBA with minimum processing, an evaluation of the physical, chemical and  morphological characteristics of a locally available BA and its effect, as SCM on properties of structural concrete was taken up.This research work describes the feasibility of using the Fly Ash (FA) Rice Husk Ash (RHA) and Sugarcane Bagasse Ash(SCBA) waste in concrete production as a partial replacement of cement. This present work deals with the effect on strength and mechanical properties of concrete using Triple blending of cement concrete using FA, RHA and SCBA instead of cement. The cement has been replaced by rice husk ash, accordingly in the range with 0%, 10%, 20% and 30% by weight. Concrete mixture of M20 and M25 and M30, were produced, tested and compared in terms of compressive strengths with the Conventional concrete. These tests were carried out to evaluate the mechanical properties for the test results of7, 14, 28, 56 and 90 days for Compressive strengths and Tensile & Flexural Strengths at 28 days. The durability aspect of the samples for Acid attack, Alkaline attack and Sulphate attack was also tested. The result indicates that the FA, RHA and SCBA improve the Compressive Strength and durability of concrete.  


2017 ◽  
Vol 751 ◽  
pp. 544-549
Author(s):  
Winai Ouypornprasert ◽  
Narong Traitruengtatsana ◽  
Kong Kamollertvara

The objective of this technical paper was to propose the use of optimum partial replacement of cement by pozzolan of high-silica content i.e. nanosilica, silica fume and rice husk ash. Firstly cement hydration, pozzolanic reactions of pozzolan and stoichiometry were reviewed. Then the optimum fractional replacement of cement by pozzolan based on the complete consumption of calcium hydroxide and the strength activity index (SAI) were formulated and proposed. After that the results of a series of tests of cement mortars were shown to verify the proposed concepts. The applicability for the mass concrete production was demonstrated by prediction of mean values of nonnormal distributions from the corresponding specifications.


2021 ◽  
Vol 13 (3) ◽  
pp. 127-141
Author(s):  
Franco Muleya ◽  
Natasha Muwila ◽  
Chipozya Kosta Tembo ◽  
Alice Lungu

Abstract Cement is an important construction material in concrete production; however, it is expensive and unaffordable for many low-income and rural communities in developing countries. Rice husk is a by-product from the rice mill process, with an approximate ratio of 200 kg rice husk per one tonne of rice produced. This experimental study aimed to investigate the integrity of concrete produced in Zambia using rice husk ash (RHA) to partially replace cement. The primary goal was to carry out a cost–benefit analysis on the use of RHA in concrete. RHA was used to partially replace cement with ratios of 10 %, 20 % and 30 %. The 20 % cement replacement mix produced the optimum 18 MPa concrete strength results at a 0.5 water/binder ratio. This translated in cost reduction of concrete by 12.5 %, which is particularly significant for higher concrete volumes. The produced concrete is suitable for lightly loaded structures, such as foundation footings, surface beds and walkways to benefit low-income communities. The study further concluded that the RHA based concrete was more cost-efficient in structures that were close to areas of rice production due to reduced RHA transportation costs.


2014 ◽  
Vol 935 ◽  
pp. 193-196 ◽  
Author(s):  
Asma Abd Elhsameed ◽  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin

Agricultural and industrial by-products are commonly used in concrete production as cement replacement materials (CRMs) or as admixtures to enhance both fresh and hardened properties of concrete as well as to save the environment from the negative effects caused by their disposal. This paper presents some findings on the effect of Microwave Incinerated Rice Husk Ash (MIRHA) on workability and compressive strength of concrete. It was obtained that the inclusion of MIRHA as partial replacement of cement could significantly improve the compressive strength of hardened concrete while reducing the workability of fresh concrete.


Author(s):  
Kavitha E ◽  
Karthik S ◽  
Eithya B ◽  
Seenirajan M

The quantity of fly ash produced from thermal power plants in India is approximately 80 million tons each year, and its percentage utilization is less than 10%. An attempt has been made to utilize these cheaper materials in concrete production. This thesis aims at investigating the characteristics of fresh concrete and various strengths of hardened concrete made with various mineral admixtures such as fly ash. GGBFS, silica fume. Rice husk ash along with polypropylene fibres in various proportions.  M20 grade concrete is considered for experimental studies with 53grade Ordinary Portland Cement blended with varying percentages of mineral admixtures. The maximum size of coarse aggregate used is 20mm.  Various mineral admixtures such as fly ash. GGBFS.Silica fume. Rice Husk Ash were added concrete in various percentages by partially replacing cement and the optimum percentage of the mineral admixtures will be found.  Based on the obtained values, the admixture with maximum mechanical strength is determined and to this polypropylene fibre is added by varying 0 to 0.5 % by weight of cement to the mix.  The test results obtained were compared and discussed with conventional concrete.


Sign in / Sign up

Export Citation Format

Share Document