Effect of high temperature on the bond performance between basalt fibre reinforced polymer (BFRP) bars and concrete

2017 ◽  
Vol 141 ◽  
pp. 44-51 ◽  
Author(s):  
Chenchen Li ◽  
Danying Gao ◽  
Yinglai Wang ◽  
Jiyu Tang

This paper presents an experimental study on the bond behaviour of sand-coated basalt fibre reinforced polymer (BFRP) bars and conventional steel bars of 10mm- diameter. The bond strength of these bars were determined according to ASTM D7913/D7913M-14 standards. The pullout specimens consisted of BFRP bars embedded in concrete cubes (200mm on each side) with the compressive strength of 40MPa were constructed. The pullout test results contain the bond failure mode, the average bond strength , the slip at the free and loaded end, and the bond stress-slip relationship curves.The test results showed that the bond strength of sand-coated BFRP bars was about 70% that of the steel bars.


2021 ◽  
Author(s):  
Jian-nan Zhou ◽  
Xiao-shuo Chen ◽  
Yin-zhi Zhou ◽  
Wen-ye Wang ◽  
Peng Wang ◽  
...  

2021 ◽  
pp. 136943322098166
Author(s):  
Wang Xin ◽  
Shi Jianzhe ◽  
Ding Lining ◽  
Jin Yundong ◽  
Wu Zhishen

A combination of coral reef sand (CRS) concrete and fibre-reinforced polymer (FRP) bars provides an effective solution to the durability deficiency in conventional RC structures. This study experimentally investigates the durability of CRS concrete beams reinforced with basalt FRP (BFRP) bars in a simulated marine environment. Flexural tests are conducted on a total of fourteen CRS concrete beams aged in a cyclic wet-dry saline solution at temperatures of 25, 40 and 55°C. The variables comprise the types of reinforcement (steel and BFRP), the aging duration and the temperature. The failure modes, capacities, deflections and crack development of the beams are analysed and discussed. The results indicate that the ultimate load of the beams exhibits no degradation after aging, whereas the failure mode of the BFRP-CRS concrete beams transition from flexure to shear, which is caused by the degradation in the mechanical properties of the stirrups. The aged BFRP-CRS concrete beams show a substantial increase of over 70% in their initial stiffness compared with the control beams (beams without aging) and a substantial decrease in their crack width after aging due to the prolonged maturation of the concrete. Furthermore, a formula for calculating the shear capacity in the existing code is modified by a partial factor equal to 2, which can predict the capacity of a CRS concrete beam reinforced with BFRP bars in a marine environment.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 77
Author(s):  
Nurul Emi Nor Ain Mohammad ◽  
Aidah Jumahat ◽  
Mohamad Fashan Ghazali

This paper investigates the effect of nanosilica on impact and energy absorption properties of sandwich foam-fibre composites. The materials used in this study are closed-cell aluminum (Al) foam (as the core material) that is sandwiched in between nanomodified basalt fiber reinforced polymer (as the face-sheets). The face sheets were made of Basalt Fibre, nanosilica and epoxy polymer matrix. The sandwich composite structures are known to have the capability of resisting impact loads and good in absorbing energy. The objective of this paper is to determine the influence of closed-cell aluminum foam core and nanosilica filler on impact properties and fracture behavior of basalt fibre reinforced polymer (BFRP) sandwich composites when compared to the conventional glass fibre reinforced polymer (GFRP) sandwich composites. The drop impact tests were carried out to determine the energy absorbed, peak load and the force-deflection behaviour of the sandwich composite structure material. The results showed that the nanomodified BFRP-Al foam core sandwich panel exhibited promising energy absorption properties, corresponding to the highest specific energy absorption value observed. Also, the result indicates that the Aluminium Foam BFRP sandwich composite exhibited higher energy absorption when compared to the Aluminium foam GFRP sandwich composite.  


Author(s):  
Eric Hughes ◽  
Adeyemi Adesina ◽  
Bruno Paini ◽  
Sreekanta Das ◽  
Niel Van Engelen

2018 ◽  
Vol 7 (3.11) ◽  
pp. 193
Author(s):  
Ummu Raihanah Hashim ◽  
Aidah Jumahat ◽  
Muhammad Fashan Md Ghazali

Synthetic FRP have been used for many years in wide applications owing to their versatility and good performance. However, environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill spaces and depletion of finite resources of fossil raw materials, such as petroleum or natural gas. Hence, materials derived from natural products are emerging as potential substitutes for petroleum-based material. The usage of natural fibre reinforced polymer (NFRP) composite have triggered considerable interest to explore the usefulness of this material. Excellent energy absorption of sandwich-structured composite made it a versatile structure used in various industries such transportation, automotive, building construction and marine. On top of that, the research data on aluminium foam as a core material in sandwich panel are limited and need to be further studied. This research is aimed to determine the quasi-static indentation properties of Basalt Fibre Reinforced Polymer/Aluminium Foam (BF-AF) sandwich panel and compare with the properties of Glass Fibre Reinforced Polymer/Aluminium Foam (GF-AF) sandwich panel. In this study, BFRP and GFRP composites with nanosilica were fabricated using vacuum bagging method. Aluminium foam was used as a core in the sandwich panel structure. The quasi-static indentation tests were performed using 10mm indenter and the specimen size was 50mm x 50mm with thickness of 3mm. The effect of aluminum foam on indentation properties were studied. The results showed that the addition of nanosilica enhanced the energy absorption, depth of penetration and damage area of the composites. The indentation properties of BF-AF were higher than those of GF-AF sandwich panel composites. Therefore, this research contributes to a new knowledge on the properties of aluminium foam-FRP composite materials


2020 ◽  
Vol 231 ◽  
pp. 117138 ◽  
Author(s):  
Wei Wei ◽  
Feng Liu ◽  
Zhe Xiong ◽  
Fei Yang ◽  
Lijuan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document