Experimental study on the enhancement of additional ribs to the bond performance of FRP bars in concrete

2018 ◽  
Vol 185 ◽  
pp. 545-554 ◽  
Author(s):  
Ting Li ◽  
Hong Zhu ◽  
Qiang Wang ◽  
Jian Li ◽  
Tiange Wu
2022 ◽  
pp. 136943322110651
Author(s):  
Ruiming Cao ◽  
Bai Zhang ◽  
Luming Wang ◽  
Jianming Ding ◽  
Xianhua Chen

Alkali-activated materials (AAMs) are considered an eco-friendly alternative to ordinary Portland cement (OPC) for mitigating greenhouse-gas emissions and enabling efficient waste recycling. In this paper, an innovative seawater sea-sand concrete (SWSSC), that is, seawater sea-sand alkali-activated concrete (SWSSAAC), was developed using AAMs instead of OPC to explore the application of marine resources and to improve the durability of conventional SWSSC structures. Then, three types of fiber-reinforced polymer (FRP) bars, that is, basalt-FRP, glass-FRP, and carbon-FRP bars, were selected to investigate their bond behavior with SWSSAAC at different alkaline dosages (3%, 4%, and 6% Na2O contents). The experimental results manifested that the utilization of the alkali-activated binders can increase the splitting tensile strength ( ft) of the concrete due to the denser microstructures of AAMs than OPC pastes. This improved characteristic was helpful in enhancing the bond performance of FRP bars, especially the slope of bond-slip curves in the ascending section (i.e., bond stiffness). Approximately three times enhancement in terms of the initial bond rigidity was achieved with SWSSAAC compared to SWSSC at the same concrete strength. Furthermore, compared with the BFRP and GFRP bars, the specimens reinforced with the CFRP bars experienced higher bond strength and bond rigidity due to their relatively high tensile strength and elastic modulus. Additionally, significant improvements in initial bond stiffness and bond strength were also observed as the alkaline contents (i.e., concrete strength) of the SWSSAAC were aggrandized, demonstrating the integration of the FRP bars and SWSSAAC is achievable, which contributes to an innovative channel for the development of SWSSC pavements or structures.


2019 ◽  
Vol 208 ◽  
pp. 454-465 ◽  
Author(s):  
Wenjie Ge ◽  
Ashraf F. Ashour ◽  
Dafu Cao ◽  
Weigang Lu ◽  
Peiqi Gao ◽  
...  

2019 ◽  
Vol 197 ◽  
pp. 109443 ◽  
Author(s):  
Zeyang Sun ◽  
Linchen Fu ◽  
De-Cheng Feng ◽  
Apete R. Vatuloka ◽  
Yang Wei ◽  
...  

2010 ◽  
Vol 22 (4) ◽  
pp. 527-534 ◽  
Author(s):  
Sang-Woo Kim ◽  
Do-Jin Kim ◽  
Hye-Sun Yoon ◽  
Sung-Cheol Baek ◽  
Kil-Hee Kim

2018 ◽  
Vol 173 ◽  
pp. 272-288 ◽  
Author(s):  
Shutong Yang ◽  
Chao Yang ◽  
Meilin Huang ◽  
Yang Liu ◽  
Jitong Jiang ◽  
...  

2014 ◽  
Vol 1082 ◽  
pp. 408-411
Author(s):  
Woo Tai Jung ◽  
Moon Seoung Keum ◽  
Jae Yoon Kang ◽  
Jong Sup Park

Despite of their outstanding axial strength, CFRP tendons necessitate special anchorage due to their low lateral shear strength. In order to cope with such CFRP tendon, the conventional bond type anchor needs to be improved. The results of bond tests executed on 10-mm diameter CFRP tendons coated with sand and oxide revealed that, even if the average bond strength increases by 3 times compared to the non-coated bare tendon, the coated CFRP tendon still requires excessively long anchored length for bonding. Therefore, this study applies a method enabling to shorten the bonded length and improving further the bond performance compared to sand or oxide coating. The improvement of the bond characteristics is achieved by splitting the ends of the CFRP tendon so as to widen the bonded area by 3.5 times. The test results showed that the anchor performance of the CFRP tendon reaches 95% of its tensile strength making it applicable for the bond type anchor.


Sign in / Sign up

Export Citation Format

Share Document