An Experimental Study on Anchor Performance of Bare CFRP Tendons with Bond Type Anchor

2014 ◽  
Vol 1082 ◽  
pp. 408-411
Author(s):  
Woo Tai Jung ◽  
Moon Seoung Keum ◽  
Jae Yoon Kang ◽  
Jong Sup Park

Despite of their outstanding axial strength, CFRP tendons necessitate special anchorage due to their low lateral shear strength. In order to cope with such CFRP tendon, the conventional bond type anchor needs to be improved. The results of bond tests executed on 10-mm diameter CFRP tendons coated with sand and oxide revealed that, even if the average bond strength increases by 3 times compared to the non-coated bare tendon, the coated CFRP tendon still requires excessively long anchored length for bonding. Therefore, this study applies a method enabling to shorten the bonded length and improving further the bond performance compared to sand or oxide coating. The improvement of the bond characteristics is achieved by splitting the ends of the CFRP tendon so as to widen the bonded area by 3.5 times. The test results showed that the anchor performance of the CFRP tendon reaches 95% of its tensile strength making it applicable for the bond type anchor.

2014 ◽  
Vol 1061-1062 ◽  
pp. 151-154
Author(s):  
Woo Tai Jung ◽  
Moon Seoung Keum ◽  
Sung Yong Choi ◽  
Jae Yoon Kang ◽  
Jong Sup Park

The anchoring of CFRP tendon can be performed by wedging, bonding or compressing. The wedge type anchor, used for PS steel tendon, is inappropriate for direct application to the CFRP tendon due to its low lateral stiffness. Since the bond performance of the CFRP tendon depends on the anchor performance, the bond type anchor presents the problem of requiring long steel sleeve in case of low bond performance or high tensile performance. Compared to the bond type anchor, the compressing type anchor offers better applicability but necessitates the development of a sleeve fitted to the dimensions of each CFRP tendon. This study intends to examine the anchoring characteristics of the compressed sleeve for the temporary anchorage of a CFRP tendon with diameter of 10 mm. To that goal, the properties of the 10 mm-diameter CFRP tendon were assessed using the bond type anchor and the corresponding anchor performance is compared to that of the compressed anchor. The test results revealed that the use of spacers in the compressed anchor provided lower anchor performance due to the characteristics of the spacers. For the specimen without spacer, the micro-deformations formed inside the sleeve were seen to compress the CFRP tendon by gearing directly the tendon and to provide anchor performance reaching about 72% of the tensile strength of the CFRP tendon. Further study shall develop a sleeve with increased compress force on the CFRP tendon so as to improve the anchor performance of the compressed sleeve. Moreover, solution shall also be provided to introduce a uniform compress force.


This paper presents an experimental study on the bond behaviour of sand-coated basalt fibre reinforced polymer (BFRP) bars and conventional steel bars of 10mm- diameter. The bond strength of these bars were determined according to ASTM D7913/D7913M-14 standards. The pullout specimens consisted of BFRP bars embedded in concrete cubes (200mm on each side) with the compressive strength of 40MPa were constructed. The pullout test results contain the bond failure mode, the average bond strength , the slip at the free and loaded end, and the bond stress-slip relationship curves.The test results showed that the bond strength of sand-coated BFRP bars was about 70% that of the steel bars.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 757 ◽  
Author(s):  
Kim ◽  
Hong ◽  
Han ◽  
Kim

In this study, coating equipment for the effective underwater repair of submerged structures was developed. The tensile bond characteristics of selected epoxy resin coatings were investigated by coating the surface of a specimen using each of the four types of equipment. Using the experimental results, the tensile bond strength and the coating thickness were analyzed according to the type of equipment, coating, and curing time. The results show that the type of coating equipment used had the greatest effect on the measured bond strength and coating thickness of the selected coatings. However, the effect of coating type and curing time on the bond strength and the thickness was observed to be insignificant. Compared with the developed equipment, the surface treatment of the coating was observed to be more effective when using the pre-existing equipment, and thus the bond performance of the coating was improved compared to using the pre-existing equipment. Based on the experimental results, improvements and needs involving the equipment for further research were discussed.


2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


2015 ◽  
Vol 60 (4) ◽  
pp. 2821-2826 ◽  
Author(s):  
A. Wierzba ◽  
S. Mróz ◽  
P. Szota ◽  
A. Stefanik ◽  
R. Mola

The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm) was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.


2011 ◽  
Vol 94-96 ◽  
pp. 543-546
Author(s):  
Ning Zhang ◽  
Ai Zhong Lu ◽  
Yun Qian Xu ◽  
Pan Cui

Direct pull-out tests were performed to evaluate the bond performance of glass fiber-reinforced polymer (GFRP) reinforcing bars in cement mortar. Specimens with different bar diameters and different grouted lengths (i.e., 5d, 10d and 15d, d is the diameter of bars) are prepared for the pull-out tests. For comparison, specimens with plain aluminium alloy bars (AAB) were tested as well. The result shows that the average bond stress between plain aluminium alloy bars and cement is much smaller than that between the deformed GFRP bars and cement; thin GFRP bars tended to have larger average bond stress; the shorter the grouted length, the smaller the maximum average bond stress. Only part of grouted length undertakes the bond stress and the length depends on the shear modulus of GFRP and the surrounding material.


2010 ◽  
Vol 97-101 ◽  
pp. 1863-1866
Author(s):  
Liang Yang ◽  
Li Xu

Performance of tool has always been a puzzle in the course of high manganese steel drilling. In this paper, improvement of drill tool is been done on drill bit structure and parameters of cutting tip by means of analyzing geometric parameter. By utilizing simulation method correctly, the influence of bit parameter on drilling force is analyzed. Meanwhile, by adopting the way of dividing into groups, comparison experiment between improved and no improved has been done. The comparison analysis of test results is carried out including tool life, wear and drilling force. The conclusion showed that the improved bit has better performance.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2017 ◽  
Vol 902 ◽  
pp. 33-40
Author(s):  
Cong Thuat Dang ◽  
Ngoc Hieu Dinh

Old reinforced concrete buildings constructed around 1980’s in many developing countries have been designed against mainly gravity load. Beam-column joints in these buildings contain slightly or no shear reinforcement inside the panel zones due to the construction convenience, and are vulnerable to shear failure in beam-column joints under the action of earthquake loads, especially for the exterior beam-column joints. This experimental study aimed to investigate the seismic performance of five half-scale exterior beam-column joints simulating the joints in existing reinforced-concrete buildings with non-shear hoop details. The test results showed that the structural performances of the beam-column joints under earthquake including failure mode, load-drift ratio relationship, shear strain of the joints and energy dissipation are strongly affected by the amount of longitudinal reinforcing bars of beams.


2005 ◽  
Vol 40 (6) ◽  
pp. 571-586 ◽  
Author(s):  
Y Liu ◽  
J Lin ◽  
T. A Dean ◽  
D. C. J Farrugia

During axisymmetric hot tensile testing, necking normally takes place due to the thermal gradient and the accumulation of microdamage. This paper introduces an integrated technique to predict the damage and necking evolution behaviour. Firstly, a set of multiaxial mechanism-based unified viscoplastic-damage constitutive equations is presented. This equation set, which models the evolution of grain boundary (intragranular) and plasticity-induced (intergranular) damage, is determined for a free-cutting steel tested over a range of temperatures and strain rates on a Gleeble thermomechanical simulator. This model has been implemented using the CREEP subroutine of the commercial finite element (FE) solver ABAQUS. Numerical procedures to simulate axisymmetric hot tensile deformation are developed with consideration of the thermal gradient along the axis of the tensile testpiece. FE simulations are carried out to reproduce the necking phenomenon and the evolution of plasticity-induced and grain boundary damage. The simulated results have been validated with experimental tensile test results. The effects of necking and its associated stress state on flow stress and ductility are investigated. The flow stress and ductility data obtained from a Gleeble material simulator under various hot deformation conditions have also been numerically studied.


Sign in / Sign up

Export Citation Format

Share Document